Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) <-> <. F , ( W ++ <" ( W ` 0 ) "> ) >. e. ( Walks ` G ) ) |
2 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) ) |
3 |
|
wlkcl |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` F ) e. NN0 ) |
4 |
|
wrdsymb1 |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. ( Vtx ` G ) ) |
5 |
4
|
s1cld |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> <" ( W ` 0 ) "> e. Word ( Vtx ` G ) ) |
6 |
|
ccatlenOLD |
|- ( ( W e. Word ( Vtx ` G ) /\ <" ( W ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` W ) + ( # ` <" ( W ` 0 ) "> ) ) ) |
7 |
5 6
|
syldan |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` W ) + ( # ` <" ( W ` 0 ) "> ) ) ) |
8 |
|
s1len |
|- ( # ` <" ( W ` 0 ) "> ) = 1 |
9 |
8
|
a1i |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( # ` <" ( W ` 0 ) "> ) = 1 ) |
10 |
9
|
oveq2d |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( ( # ` W ) + ( # ` <" ( W ` 0 ) "> ) ) = ( ( # ` W ) + 1 ) ) |
11 |
7 10
|
eqtrd |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` W ) + 1 ) ) |
12 |
11
|
eqeq1d |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) <-> ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) ) ) |
13 |
|
lencl |
|- ( W e. Word ( Vtx ` G ) -> ( # ` W ) e. NN0 ) |
14 |
|
eqcom |
|- ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) <-> ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) ) |
15 |
|
nn0cn |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC ) |
16 |
15
|
adantl |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` F ) e. NN0 ) -> ( # ` F ) e. CC ) |
17 |
|
nn0cn |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) |
18 |
17
|
adantr |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` F ) e. NN0 ) -> ( # ` W ) e. CC ) |
19 |
|
1cnd |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` F ) e. NN0 ) -> 1 e. CC ) |
20 |
16 18 19
|
addcan2d |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` F ) e. NN0 ) -> ( ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) <-> ( # ` F ) = ( # ` W ) ) ) |
21 |
20
|
biimpd |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` F ) e. NN0 ) -> ( ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) -> ( # ` F ) = ( # ` W ) ) ) |
22 |
14 21
|
syl5bi |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` F ) e. NN0 ) -> ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) -> ( # ` F ) = ( # ` W ) ) ) |
23 |
22
|
ex |
|- ( ( # ` W ) e. NN0 -> ( ( # ` F ) e. NN0 -> ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) -> ( # ` F ) = ( # ` W ) ) ) ) |
24 |
23
|
com23 |
|- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) = ( # ` W ) ) ) ) |
25 |
13 24
|
syl |
|- ( W e. Word ( Vtx ` G ) -> ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) = ( # ` W ) ) ) ) |
26 |
25
|
adantr |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) = ( # ` W ) ) ) ) |
27 |
12 26
|
sylbid |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) = ( # ` W ) ) ) ) |
28 |
27
|
com3l |
|- ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( # ` F ) = ( # ` W ) ) ) ) |
29 |
2 3 28
|
sylc |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( # ` F ) = ( # ` W ) ) ) |
30 |
1 29
|
sylbir |
|- ( <. F , ( W ++ <" ( W ` 0 ) "> ) >. e. ( Walks ` G ) -> ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( # ` F ) = ( # ` W ) ) ) |
31 |
30
|
com12 |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> ( <. F , ( W ++ <" ( W ` 0 ) "> ) >. e. ( Walks ` G ) -> ( # ` F ) = ( # ` W ) ) ) |