Step |
Hyp |
Ref |
Expression |
1 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
2 |
|
oveq1 |
|- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( ( # ` P ) - 1 ) = ( ( ( # ` F ) + 1 ) - 1 ) ) |
3 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
4 |
3
|
nn0cnd |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. CC ) |
5 |
|
pncan1 |
|- ( ( # ` F ) e. CC -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
6 |
4 5
|
syl |
|- ( F ( Walks ` G ) P -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
7 |
2 6
|
sylan9eqr |
|- ( ( F ( Walks ` G ) P /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( ( # ` P ) - 1 ) = ( # ` F ) ) |
8 |
7
|
eqcomd |
|- ( ( F ( Walks ` G ) P /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
9 |
1 8
|
mpdan |
|- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |