| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlklenvp1 |  |-  ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) | 
						
							| 2 |  | oveq1 |  |-  ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( ( # ` P ) - 1 ) = ( ( ( # ` F ) + 1 ) - 1 ) ) | 
						
							| 3 |  | wlkcl |  |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) | 
						
							| 4 | 3 | nn0cnd |  |-  ( F ( Walks ` G ) P -> ( # ` F ) e. CC ) | 
						
							| 5 |  | pncan1 |  |-  ( ( # ` F ) e. CC -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( F ( Walks ` G ) P -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) | 
						
							| 7 | 2 6 | sylan9eqr |  |-  ( ( F ( Walks ` G ) P /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( ( # ` P ) - 1 ) = ( # ` F ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( F ( Walks ` G ) P /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) | 
						
							| 9 | 1 8 | mpdan |  |-  ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |