Step |
Hyp |
Ref |
Expression |
1 |
|
wlklnwwlkln2lem.1 |
|- ( ph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
wwlknbp |
|- ( P e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ P e. Word ( Vtx ` G ) ) ) |
4 |
|
iswwlksn |
|- ( N e. NN0 -> ( P e. ( N WWalksN G ) <-> ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) ) |
5 |
4
|
adantr |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( P e. ( N WWalksN G ) <-> ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) ) |
6 |
|
lencl |
|- ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. CC ) |
8 |
7
|
adantl |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( # ` P ) e. CC ) |
9 |
|
1cnd |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> 1 e. CC ) |
10 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
11 |
10
|
adantr |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> N e. CC ) |
12 |
8 9 11
|
subadd2d |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( ( # ` P ) - 1 ) = N <-> ( N + 1 ) = ( # ` P ) ) ) |
13 |
|
eqcom |
|- ( ( N + 1 ) = ( # ` P ) <-> ( # ` P ) = ( N + 1 ) ) |
14 |
12 13
|
bitr2di |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) = ( N + 1 ) <-> ( ( # ` P ) - 1 ) = N ) ) |
15 |
14
|
biimpcd |
|- ( ( # ` P ) = ( N + 1 ) -> ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) - 1 ) = N ) ) |
16 |
15
|
adantl |
|- ( ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) -> ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) - 1 ) = N ) ) |
17 |
16
|
impcom |
|- ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ( # ` P ) - 1 ) = N ) |
18 |
1
|
com12 |
|- ( P e. ( WWalks ` G ) -> ( ph -> E. f f ( Walks ` G ) P ) ) |
19 |
18
|
adantr |
|- ( ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) -> ( ph -> E. f f ( Walks ` G ) P ) ) |
20 |
19
|
adantl |
|- ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ph -> E. f f ( Walks ` G ) P ) ) |
21 |
20
|
imp |
|- ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> E. f f ( Walks ` G ) P ) |
22 |
|
simpr |
|- ( ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) /\ f ( Walks ` G ) P ) -> f ( Walks ` G ) P ) |
23 |
|
wlklenvm1 |
|- ( f ( Walks ` G ) P -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
24 |
22 23
|
jccir |
|- ( ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) /\ f ( Walks ` G ) P ) -> ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) |
25 |
24
|
ex |
|- ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> ( f ( Walks ` G ) P -> ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) ) |
26 |
25
|
eximdv |
|- ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> ( E. f f ( Walks ` G ) P -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) ) |
27 |
21 26
|
mpd |
|- ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) |
28 |
|
eqeq2 |
|- ( ( ( # ` P ) - 1 ) = N -> ( ( # ` f ) = ( ( # ` P ) - 1 ) <-> ( # ` f ) = N ) ) |
29 |
28
|
anbi2d |
|- ( ( ( # ` P ) - 1 ) = N -> ( ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) <-> ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |
30 |
29
|
exbidv |
|- ( ( ( # ` P ) - 1 ) = N -> ( E. f ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) <-> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |
31 |
27 30
|
syl5ib |
|- ( ( ( # ` P ) - 1 ) = N -> ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |
32 |
31
|
expd |
|- ( ( ( # ` P ) - 1 ) = N -> ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) |
33 |
17 32
|
mpcom |
|- ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |
34 |
33
|
ex |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) |
35 |
5 34
|
sylbid |
|- ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( P e. ( N WWalksN G ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) |
36 |
35
|
3adant1 |
|- ( ( G e. _V /\ N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( P e. ( N WWalksN G ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) |
37 |
3 36
|
mpcom |
|- ( P e. ( N WWalksN G ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |
38 |
37
|
com12 |
|- ( ph -> ( P e. ( N WWalksN G ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |