| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlklnwwlkln2lem.1 |  |-  ( ph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | wwlknbp |  |-  ( P e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ P e. Word ( Vtx ` G ) ) ) | 
						
							| 4 |  | iswwlksn |  |-  ( N e. NN0 -> ( P e. ( N WWalksN G ) <-> ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( P e. ( N WWalksN G ) <-> ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) ) | 
						
							| 6 |  | lencl |  |-  ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. NN0 ) | 
						
							| 7 | 6 | nn0cnd |  |-  ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. CC ) | 
						
							| 8 | 7 | adantl |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( # ` P ) e. CC ) | 
						
							| 9 |  | 1cnd |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> 1 e. CC ) | 
						
							| 10 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 11 | 10 | adantr |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> N e. CC ) | 
						
							| 12 | 8 9 11 | subadd2d |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( ( # ` P ) - 1 ) = N <-> ( N + 1 ) = ( # ` P ) ) ) | 
						
							| 13 |  | eqcom |  |-  ( ( N + 1 ) = ( # ` P ) <-> ( # ` P ) = ( N + 1 ) ) | 
						
							| 14 | 12 13 | bitr2di |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) = ( N + 1 ) <-> ( ( # ` P ) - 1 ) = N ) ) | 
						
							| 15 | 14 | biimpcd |  |-  ( ( # ` P ) = ( N + 1 ) -> ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) - 1 ) = N ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) -> ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) - 1 ) = N ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ( # ` P ) - 1 ) = N ) | 
						
							| 18 | 1 | com12 |  |-  ( P e. ( WWalks ` G ) -> ( ph -> E. f f ( Walks ` G ) P ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) -> ( ph -> E. f f ( Walks ` G ) P ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ph -> E. f f ( Walks ` G ) P ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> E. f f ( Walks ` G ) P ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) /\ f ( Walks ` G ) P ) -> f ( Walks ` G ) P ) | 
						
							| 23 |  | wlklenvm1 |  |-  ( f ( Walks ` G ) P -> ( # ` f ) = ( ( # ` P ) - 1 ) ) | 
						
							| 24 | 22 23 | jccir |  |-  ( ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) /\ f ( Walks ` G ) P ) -> ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> ( f ( Walks ` G ) P -> ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) ) | 
						
							| 26 | 25 | eximdv |  |-  ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> ( E. f f ( Walks ` G ) P -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) ) | 
						
							| 27 | 21 26 | mpd |  |-  ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) ) | 
						
							| 28 |  | eqeq2 |  |-  ( ( ( # ` P ) - 1 ) = N -> ( ( # ` f ) = ( ( # ` P ) - 1 ) <-> ( # ` f ) = N ) ) | 
						
							| 29 | 28 | anbi2d |  |-  ( ( ( # ` P ) - 1 ) = N -> ( ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) <-> ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) | 
						
							| 30 | 29 | exbidv |  |-  ( ( ( # ` P ) - 1 ) = N -> ( E. f ( f ( Walks ` G ) P /\ ( # ` f ) = ( ( # ` P ) - 1 ) ) <-> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) | 
						
							| 31 | 27 30 | imbitrid |  |-  ( ( ( # ` P ) - 1 ) = N -> ( ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) /\ ph ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) | 
						
							| 32 | 31 | expd |  |-  ( ( ( # ` P ) - 1 ) = N -> ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) | 
						
							| 33 | 17 32 | mpcom |  |-  ( ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) /\ ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) | 
						
							| 34 | 33 | ex |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( ( P e. ( WWalks ` G ) /\ ( # ` P ) = ( N + 1 ) ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) | 
						
							| 35 | 5 34 | sylbid |  |-  ( ( N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( P e. ( N WWalksN G ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) | 
						
							| 36 | 35 | 3adant1 |  |-  ( ( G e. _V /\ N e. NN0 /\ P e. Word ( Vtx ` G ) ) -> ( P e. ( N WWalksN G ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) ) | 
						
							| 37 | 3 36 | mpcom |  |-  ( P e. ( N WWalksN G ) -> ( ph -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) | 
						
							| 38 | 37 | com12 |  |-  ( ph -> ( P e. ( N WWalksN G ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) |