| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uspgrupgr |  |-  ( G e. USPGraph -> G e. UPGraph ) | 
						
							| 2 |  | wlklnwwlkln1 |  |-  ( G e. UPGraph -> ( ( f ( Walks ` G ) P /\ ( # ` f ) = N ) -> P e. ( N WWalksN G ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( G e. USPGraph -> ( ( f ( Walks ` G ) P /\ ( # ` f ) = N ) -> P e. ( N WWalksN G ) ) ) | 
						
							| 4 | 3 | exlimdv |  |-  ( G e. USPGraph -> ( E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) -> P e. ( N WWalksN G ) ) ) | 
						
							| 5 |  | wlklnwwlkln2 |  |-  ( G e. USPGraph -> ( P e. ( N WWalksN G ) -> E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) ) ) | 
						
							| 6 | 4 5 | impbid |  |-  ( G e. USPGraph -> ( E. f ( f ( Walks ` G ) P /\ ( # ` f ) = N ) <-> P e. ( N WWalksN G ) ) ) |