Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
3 |
|
fdm |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
4 |
3
|
eqcomd |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 0 ... ( # ` F ) ) = dom P ) |
5 |
2 4
|
syl |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) = dom P ) |
6 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
7 |
|
elnn0uz |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
8 |
|
fzn0 |
|- ( ( 0 ... ( # ` F ) ) =/= (/) <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
9 |
7 8
|
sylbb2 |
|- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) =/= (/) ) |
10 |
6 9
|
syl |
|- ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) =/= (/) ) |
11 |
5 10
|
eqnetrrd |
|- ( F ( Walks ` G ) P -> dom P =/= (/) ) |
12 |
|
frel |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P ) |
13 |
2 12
|
syl |
|- ( F ( Walks ` G ) P -> Rel P ) |
14 |
|
reldm0 |
|- ( Rel P -> ( P = (/) <-> dom P = (/) ) ) |
15 |
14
|
necon3bid |
|- ( Rel P -> ( P =/= (/) <-> dom P =/= (/) ) ) |
16 |
13 15
|
syl |
|- ( F ( Walks ` G ) P -> ( P =/= (/) <-> dom P =/= (/) ) ) |
17 |
11 16
|
mpbird |
|- ( F ( Walks ` G ) P -> P =/= (/) ) |