| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | wlkp |  |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) | 
						
							| 3 |  | fdm |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 0 ... ( # ` F ) ) = dom P ) | 
						
							| 5 | 2 4 | syl |  |-  ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) = dom P ) | 
						
							| 6 |  | wlkcl |  |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) | 
						
							| 7 |  | elnn0uz |  |-  ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) | 
						
							| 8 |  | fzn0 |  |-  ( ( 0 ... ( # ` F ) ) =/= (/) <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) | 
						
							| 9 | 7 8 | sylbb2 |  |-  ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) =/= (/) ) | 
						
							| 10 | 6 9 | syl |  |-  ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) =/= (/) ) | 
						
							| 11 | 5 10 | eqnetrrd |  |-  ( F ( Walks ` G ) P -> dom P =/= (/) ) | 
						
							| 12 |  | frel |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P ) | 
						
							| 13 | 2 12 | syl |  |-  ( F ( Walks ` G ) P -> Rel P ) | 
						
							| 14 |  | reldm0 |  |-  ( Rel P -> ( P = (/) <-> dom P = (/) ) ) | 
						
							| 15 | 14 | necon3bid |  |-  ( Rel P -> ( P =/= (/) <-> dom P =/= (/) ) ) | 
						
							| 16 | 13 15 | syl |  |-  ( F ( Walks ` G ) P -> ( P =/= (/) <-> dom P =/= (/) ) ) | 
						
							| 17 | 11 16 | mpbird |  |-  ( F ( Walks ` G ) P -> P =/= (/) ) |