| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } = { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } | 
						
							| 2 |  | eqid |  |-  ( N WWalksN G ) = ( N WWalksN G ) | 
						
							| 3 |  | eqid |  |-  ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) = ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) | 
						
							| 4 | 1 2 3 | wlknwwlksnbij |  |-  ( ( G e. USPGraph /\ N e. NN0 ) -> ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) : { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } -1-1-onto-> ( N WWalksN G ) ) | 
						
							| 5 |  | fvex |  |-  ( Walks ` G ) e. _V | 
						
							| 6 | 5 | rabex |  |-  { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } e. _V | 
						
							| 7 | 6 | f1oen |  |-  ( ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) : { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } -1-1-onto-> ( N WWalksN G ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( ( G e. USPGraph /\ N e. NN0 ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) |