Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } = { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |
2 |
|
eqid |
|- ( N WWalksN G ) = ( N WWalksN G ) |
3 |
|
eqid |
|- ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) = ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) |
4 |
1 2 3
|
wlknwwlksnbij |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) : { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } -1-1-onto-> ( N WWalksN G ) ) |
5 |
|
fvex |
|- ( Walks ` G ) e. _V |
6 |
5
|
rabex |
|- { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } e. _V |
7 |
6
|
f1oen |
|- ( ( w e. { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } |-> ( 2nd ` w ) ) : { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } -1-1-onto-> ( N WWalksN G ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) |
8 |
4 7
|
syl |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) |