Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
wlkonprop |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
3 |
|
fveqeq2 |
|- ( ( # ` F ) = 0 -> ( ( P ` ( # ` F ) ) = B <-> ( P ` 0 ) = B ) ) |
4 |
3
|
anbi2d |
|- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) ) ) |
5 |
|
eqtr2 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) -> A = B ) |
6 |
|
nne |
|- ( -. A =/= B <-> A = B ) |
7 |
5 6
|
sylibr |
|- ( ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) -> -. A =/= B ) |
8 |
4 7
|
syl6bi |
|- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> -. A =/= B ) ) |
9 |
8
|
com12 |
|- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
10 |
9
|
3adant1 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
12 |
2 11
|
syl |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
13 |
12
|
necon2ad |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( A =/= B -> ( # ` F ) =/= 0 ) ) |
14 |
13
|
imp |
|- ( ( F ( A ( WalksOn ` G ) B ) P /\ A =/= B ) -> ( # ` F ) =/= 0 ) |