Description: A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 2-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkoniswlk | |- ( F ( A ( WalksOn ` G ) B ) P -> F ( Walks ` G ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
2 | 1 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
3 | simp31 | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> F ( Walks ` G ) P ) |
|
4 | 2 3 | syl | |- ( F ( A ( WalksOn ` G ) B ) P -> F ( Walks ` G ) P ) |