Step |
Hyp |
Ref |
Expression |
1 |
|
wlkonl1iedg.i |
|- I = ( iEdg ` G ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
wlkonprop |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
4 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
5 |
|
fv0p1e1 |
|- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
6 |
4 5
|
preq12d |
|- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
7 |
6
|
sseq1d |
|- ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` 0 ) , ( P ` 1 ) } C_ e ) ) |
8 |
7
|
rexbidv |
|- ( k = 0 -> ( E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e ) ) |
9 |
1
|
wlkvtxiedg |
|- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
10 |
9
|
adantr |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
11 |
10
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
12 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
13 |
|
elnnne0 |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) |
14 |
13
|
simplbi2 |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. NN ) ) |
15 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
16 |
14 15
|
syl6ibr |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
17 |
12 16
|
syl |
|- ( F ( Walks ` G ) P -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
18 |
17
|
adantr |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
19 |
18
|
imp |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
20 |
8 11 19
|
rspcdva |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e ) |
21 |
|
fvex |
|- ( P ` 0 ) e. _V |
22 |
|
fvex |
|- ( P ` 1 ) e. _V |
23 |
21 22
|
prss |
|- ( ( ( P ` 0 ) e. e /\ ( P ` 1 ) e. e ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ e ) |
24 |
|
eleq1 |
|- ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. e <-> A e. e ) ) |
25 |
|
ax-1 |
|- ( A e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) |
26 |
24 25
|
syl6bi |
|- ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) ) |
27 |
26
|
adantl |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( P ` 0 ) e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) ) |
28 |
27
|
impd |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( ( P ` 0 ) e. e /\ ( P ` 1 ) e. e ) -> A e. e ) ) |
29 |
23 28
|
syl5bir |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ e -> A e. e ) ) |
30 |
29
|
reximdv |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e -> E. e e. ran I A e. e ) ) |
31 |
30
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> ( E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e -> E. e e. ran I A e. e ) ) |
32 |
20 31
|
mpd |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) |
33 |
32
|
ex |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
34 |
33
|
3adant3 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
35 |
34
|
3ad2ant3 |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
36 |
3 35
|
syl |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
37 |
36
|
imp |
|- ( ( F ( A ( WalksOn ` G ) B ) P /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) |