| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkonl1iedg.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | wlkonprop |  |-  ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) | 
						
							| 5 |  | fv0p1e1 |  |-  ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) | 
						
							| 6 | 4 5 | preq12d |  |-  ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) | 
						
							| 7 | 6 | sseq1d |  |-  ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` 0 ) , ( P ` 1 ) } C_ e ) ) | 
						
							| 8 | 7 | rexbidv |  |-  ( k = 0 -> ( E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e ) ) | 
						
							| 9 | 1 | wlkvtxiedg |  |-  ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 12 |  | wlkcl |  |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) | 
						
							| 13 |  | elnnne0 |  |-  ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) | 
						
							| 14 | 13 | simplbi2 |  |-  ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. NN ) ) | 
						
							| 15 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) | 
						
							| 16 | 14 15 | imbitrrdi |  |-  ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 17 | 12 16 | syl |  |-  ( F ( Walks ` G ) P -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 20 | 8 11 19 | rspcdva |  |-  ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e ) | 
						
							| 21 |  | fvex |  |-  ( P ` 0 ) e. _V | 
						
							| 22 |  | fvex |  |-  ( P ` 1 ) e. _V | 
						
							| 23 | 21 22 | prss |  |-  ( ( ( P ` 0 ) e. e /\ ( P ` 1 ) e. e ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ e ) | 
						
							| 24 |  | eleq1 |  |-  ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. e <-> A e. e ) ) | 
						
							| 25 |  | ax-1 |  |-  ( A e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) | 
						
							| 26 | 24 25 | biimtrdi |  |-  ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( P ` 0 ) e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) ) | 
						
							| 28 | 27 | impd |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( ( P ` 0 ) e. e /\ ( P ` 1 ) e. e ) -> A e. e ) ) | 
						
							| 29 | 23 28 | biimtrrid |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ e -> A e. e ) ) | 
						
							| 30 | 29 | reximdv |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e -> E. e e. ran I A e. e ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> ( E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e -> E. e e. ran I A e. e ) ) | 
						
							| 32 | 20 31 | mpd |  |-  ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) | 
						
							| 33 | 32 | ex |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) | 
						
							| 34 | 33 | 3adant3 |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) | 
						
							| 35 | 34 | 3ad2ant3 |  |-  ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) | 
						
							| 36 | 3 35 | syl |  |-  ( F ( A ( WalksOn ` G ) B ) P -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( F ( A ( WalksOn ` G ) B ) P /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) |