Step |
Hyp |
Ref |
Expression |
1 |
|
wlkonwlk1l.w |
|- ( ph -> F ( Walks ` G ) P ) |
2 |
|
eqidd |
|- ( ph -> ( P ` 0 ) = ( P ` 0 ) ) |
3 |
|
wlklenvm1 |
|- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
4 |
3
|
fveq2d |
|- ( F ( Walks ` G ) P -> ( P ` ( # ` F ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
6 |
5
|
wlkpwrd |
|- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
7 |
|
lsw |
|- ( P e. Word ( Vtx ` G ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
8 |
6 7
|
syl |
|- ( F ( Walks ` G ) P -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
9 |
4 8
|
eqtr4d |
|- ( F ( Walks ` G ) P -> ( P ` ( # ` F ) ) = ( lastS ` P ) ) |
10 |
1 9
|
syl |
|- ( ph -> ( P ` ( # ` F ) ) = ( lastS ` P ) ) |
11 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
12 |
|
nn0p1nn |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) + 1 ) e. NN ) |
13 |
11 12
|
syl |
|- ( F ( Walks ` G ) P -> ( ( # ` F ) + 1 ) e. NN ) |
14 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
15 |
13 6 14
|
jca32 |
|- ( F ( Walks ` G ) P -> ( ( ( # ` F ) + 1 ) e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) ) ) |
16 |
|
fstwrdne0 |
|- ( ( ( ( # ` F ) + 1 ) e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
17 |
|
lswlgt0cl |
|- ( ( ( ( # ` F ) + 1 ) e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) ) -> ( lastS ` P ) e. ( Vtx ` G ) ) |
18 |
16 17
|
jca |
|- ( ( ( ( # ` F ) + 1 ) e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) ) -> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( lastS ` P ) e. ( Vtx ` G ) ) ) |
19 |
15 18
|
syl |
|- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( lastS ` P ) e. ( Vtx ` G ) ) ) |
20 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
21 |
20
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
22 |
|
wrdv |
|- ( F e. Word dom ( iEdg ` G ) -> F e. Word _V ) |
23 |
21 22
|
syl |
|- ( F ( Walks ` G ) P -> F e. Word _V ) |
24 |
19 23 6
|
jca32 |
|- ( F ( Walks ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( lastS ` P ) e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word ( Vtx ` G ) ) ) ) |
25 |
1 24
|
syl |
|- ( ph -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( lastS ` P ) e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word ( Vtx ` G ) ) ) ) |
26 |
5
|
iswlkon |
|- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( lastS ` P ) e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word ( Vtx ` G ) ) ) -> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 0 ) /\ ( P ` ( # ` F ) ) = ( lastS ` P ) ) ) ) |
27 |
25 26
|
syl |
|- ( ph -> ( F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 0 ) /\ ( P ` ( # ` F ) ) = ( lastS ` P ) ) ) ) |
28 |
1 2 10 27
|
mpbir3and |
|- ( ph -> F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P ) |