Metamath Proof Explorer


Theorem wlkp

Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021)

Ref Expression
Hypothesis wlkp.v
|- V = ( Vtx ` G )
Assertion wlkp
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V )

Proof

Step Hyp Ref Expression
1 wlkp.v
 |-  V = ( Vtx ` G )
2 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
3 1 2 wlkprop
 |-  ( F ( Walks ` G ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) )
4 3 simp2d
 |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V )