| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkp1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wlkp1.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | wlkp1.f |  |-  ( ph -> Fun I ) | 
						
							| 4 |  | wlkp1.a |  |-  ( ph -> I e. Fin ) | 
						
							| 5 |  | wlkp1.b |  |-  ( ph -> B e. W ) | 
						
							| 6 |  | wlkp1.c |  |-  ( ph -> C e. V ) | 
						
							| 7 |  | wlkp1.d |  |-  ( ph -> -. B e. dom I ) | 
						
							| 8 |  | wlkp1.w |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 9 |  | wlkp1.n |  |-  N = ( # ` F ) | 
						
							| 10 |  | wlkp1.e |  |-  ( ph -> E e. ( Edg ` G ) ) | 
						
							| 11 |  | wlkp1.x |  |-  ( ph -> { ( P ` N ) , C } C_ E ) | 
						
							| 12 |  | wlkp1.u |  |-  ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) | 
						
							| 13 |  | wlkp1.h |  |-  H = ( F u. { <. N , B >. } ) | 
						
							| 14 | 13 | fveq2i |  |-  ( # ` H ) = ( # ` ( F u. { <. N , B >. } ) ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( # ` H ) = ( # ` ( F u. { <. N , B >. } ) ) ) | 
						
							| 16 |  | opex |  |-  <. N , B >. e. _V | 
						
							| 17 | 2 | wlkf |  |-  ( F ( Walks ` G ) P -> F e. Word dom I ) | 
						
							| 18 |  | wrdfin |  |-  ( F e. Word dom I -> F e. Fin ) | 
						
							| 19 | 8 17 18 | 3syl |  |-  ( ph -> F e. Fin ) | 
						
							| 20 |  | fzonel |  |-  -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) | 
						
							| 21 | 20 | a1i |  |-  ( ph -> -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 22 |  | eleq1 |  |-  ( N = ( # ` F ) -> ( N e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 23 | 22 | notbid |  |-  ( N = ( # ` F ) -> ( -. N e. ( 0 ..^ ( # ` F ) ) <-> -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 24 | 21 23 | imbitrrid |  |-  ( N = ( # ` F ) -> ( ph -> -. N e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 25 | 9 24 | ax-mp |  |-  ( ph -> -. N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 26 |  | wrdfn |  |-  ( F e. Word dom I -> F Fn ( 0 ..^ ( # ` F ) ) ) | 
						
							| 27 |  | fnop |  |-  ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ <. N , B >. e. F ) -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 28 | 27 | ex |  |-  ( F Fn ( 0 ..^ ( # ` F ) ) -> ( <. N , B >. e. F -> N e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 29 | 8 17 26 28 | 4syl |  |-  ( ph -> ( <. N , B >. e. F -> N e. ( 0 ..^ ( # ` F ) ) ) ) | 
						
							| 30 | 25 29 | mtod |  |-  ( ph -> -. <. N , B >. e. F ) | 
						
							| 31 | 19 30 | jca |  |-  ( ph -> ( F e. Fin /\ -. <. N , B >. e. F ) ) | 
						
							| 32 |  | hashunsng |  |-  ( <. N , B >. e. _V -> ( ( F e. Fin /\ -. <. N , B >. e. F ) -> ( # ` ( F u. { <. N , B >. } ) ) = ( ( # ` F ) + 1 ) ) ) | 
						
							| 33 | 16 31 32 | mpsyl |  |-  ( ph -> ( # ` ( F u. { <. N , B >. } ) ) = ( ( # ` F ) + 1 ) ) | 
						
							| 34 | 9 | eqcomi |  |-  ( # ` F ) = N | 
						
							| 35 | 34 | a1i |  |-  ( ph -> ( # ` F ) = N ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ph -> ( ( # ` F ) + 1 ) = ( N + 1 ) ) | 
						
							| 37 | 15 33 36 | 3eqtrd |  |-  ( ph -> ( # ` H ) = ( N + 1 ) ) |