Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
|- V = ( Vtx ` G ) |
2 |
|
wlkp1.i |
|- I = ( iEdg ` G ) |
3 |
|
wlkp1.f |
|- ( ph -> Fun I ) |
4 |
|
wlkp1.a |
|- ( ph -> I e. Fin ) |
5 |
|
wlkp1.b |
|- ( ph -> B e. W ) |
6 |
|
wlkp1.c |
|- ( ph -> C e. V ) |
7 |
|
wlkp1.d |
|- ( ph -> -. B e. dom I ) |
8 |
|
wlkp1.w |
|- ( ph -> F ( Walks ` G ) P ) |
9 |
|
wlkp1.n |
|- N = ( # ` F ) |
10 |
|
wlkp1.e |
|- ( ph -> E e. ( Edg ` G ) ) |
11 |
|
wlkp1.x |
|- ( ph -> { ( P ` N ) , C } C_ E ) |
12 |
|
wlkp1.u |
|- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
13 |
|
wlkp1.h |
|- H = ( F u. { <. N , B >. } ) |
14 |
|
wlkp1.q |
|- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
15 |
|
wlkp1.s |
|- ( ph -> ( Vtx ` S ) = V ) |
16 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
17 |
16
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
18 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
19 |
18
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
20 |
17 19
|
jca |
|- ( F ( Walks ` G ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
21 |
8 20
|
syl |
|- ( ph -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
22 |
6 15
|
eleqtrrd |
|- ( ph -> C e. ( Vtx ` S ) ) |
23 |
22
|
elfvexd |
|- ( ph -> S e. _V ) |
24 |
23
|
adantr |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> S e. _V ) |
25 |
|
simprl |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> F e. Word dom ( iEdg ` G ) ) |
26 |
|
snex |
|- { <. N , B >. } e. _V |
27 |
|
unexg |
|- ( ( F e. Word dom ( iEdg ` G ) /\ { <. N , B >. } e. _V ) -> ( F u. { <. N , B >. } ) e. _V ) |
28 |
25 26 27
|
sylancl |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> ( F u. { <. N , B >. } ) e. _V ) |
29 |
13 28
|
eqeltrid |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> H e. _V ) |
30 |
|
ovex |
|- ( 0 ... ( # ` F ) ) e. _V |
31 |
|
fvex |
|- ( Vtx ` G ) e. _V |
32 |
30 31
|
fpm |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P e. ( ( Vtx ` G ) ^pm ( 0 ... ( # ` F ) ) ) ) |
33 |
32
|
ad2antll |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> P e. ( ( Vtx ` G ) ^pm ( 0 ... ( # ` F ) ) ) ) |
34 |
|
snex |
|- { <. ( N + 1 ) , C >. } e. _V |
35 |
|
unexg |
|- ( ( P e. ( ( Vtx ` G ) ^pm ( 0 ... ( # ` F ) ) ) /\ { <. ( N + 1 ) , C >. } e. _V ) -> ( P u. { <. ( N + 1 ) , C >. } ) e. _V ) |
36 |
33 34 35
|
sylancl |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> ( P u. { <. ( N + 1 ) , C >. } ) e. _V ) |
37 |
14 36
|
eqeltrid |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> Q e. _V ) |
38 |
24 29 37
|
3jca |
|- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> ( S e. _V /\ H e. _V /\ Q e. _V ) ) |
39 |
21 38
|
mpdan |
|- ( ph -> ( S e. _V /\ H e. _V /\ Q e. _V ) ) |