Metamath Proof Explorer


Theorem wlkp1lem5

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v
|- V = ( Vtx ` G )
wlkp1.i
|- I = ( iEdg ` G )
wlkp1.f
|- ( ph -> Fun I )
wlkp1.a
|- ( ph -> I e. Fin )
wlkp1.b
|- ( ph -> B e. W )
wlkp1.c
|- ( ph -> C e. V )
wlkp1.d
|- ( ph -> -. B e. dom I )
wlkp1.w
|- ( ph -> F ( Walks ` G ) P )
wlkp1.n
|- N = ( # ` F )
wlkp1.e
|- ( ph -> E e. ( Edg ` G ) )
wlkp1.x
|- ( ph -> { ( P ` N ) , C } C_ E )
wlkp1.u
|- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) )
wlkp1.h
|- H = ( F u. { <. N , B >. } )
wlkp1.q
|- Q = ( P u. { <. ( N + 1 ) , C >. } )
wlkp1.s
|- ( ph -> ( Vtx ` S ) = V )
Assertion wlkp1lem5
|- ( ph -> A. k e. ( 0 ... N ) ( Q ` k ) = ( P ` k ) )

Proof

Step Hyp Ref Expression
1 wlkp1.v
 |-  V = ( Vtx ` G )
2 wlkp1.i
 |-  I = ( iEdg ` G )
3 wlkp1.f
 |-  ( ph -> Fun I )
4 wlkp1.a
 |-  ( ph -> I e. Fin )
5 wlkp1.b
 |-  ( ph -> B e. W )
6 wlkp1.c
 |-  ( ph -> C e. V )
7 wlkp1.d
 |-  ( ph -> -. B e. dom I )
8 wlkp1.w
 |-  ( ph -> F ( Walks ` G ) P )
9 wlkp1.n
 |-  N = ( # ` F )
10 wlkp1.e
 |-  ( ph -> E e. ( Edg ` G ) )
11 wlkp1.x
 |-  ( ph -> { ( P ` N ) , C } C_ E )
12 wlkp1.u
 |-  ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) )
13 wlkp1.h
 |-  H = ( F u. { <. N , B >. } )
14 wlkp1.q
 |-  Q = ( P u. { <. ( N + 1 ) , C >. } )
15 wlkp1.s
 |-  ( ph -> ( Vtx ` S ) = V )
16 14 fveq1i
 |-  ( Q ` k ) = ( ( P u. { <. ( N + 1 ) , C >. } ) ` k )
17 fzp1nel
 |-  -. ( N + 1 ) e. ( 0 ... N )
18 eleq1
 |-  ( k = ( N + 1 ) -> ( k e. ( 0 ... N ) <-> ( N + 1 ) e. ( 0 ... N ) ) )
19 18 notbid
 |-  ( k = ( N + 1 ) -> ( -. k e. ( 0 ... N ) <-> -. ( N + 1 ) e. ( 0 ... N ) ) )
20 19 eqcoms
 |-  ( ( N + 1 ) = k -> ( -. k e. ( 0 ... N ) <-> -. ( N + 1 ) e. ( 0 ... N ) ) )
21 17 20 mpbiri
 |-  ( ( N + 1 ) = k -> -. k e. ( 0 ... N ) )
22 21 a1i
 |-  ( ph -> ( ( N + 1 ) = k -> -. k e. ( 0 ... N ) ) )
23 22 con2d
 |-  ( ph -> ( k e. ( 0 ... N ) -> -. ( N + 1 ) = k ) )
24 23 imp
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> -. ( N + 1 ) = k )
25 24 neqned
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( N + 1 ) =/= k )
26 fvunsn
 |-  ( ( N + 1 ) =/= k -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) = ( P ` k ) )
27 25 26 syl
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) = ( P ` k ) )
28 16 27 eqtrid
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( Q ` k ) = ( P ` k ) )
29 28 ralrimiva
 |-  ( ph -> A. k e. ( 0 ... N ) ( Q ` k ) = ( P ` k ) )