Metamath Proof Explorer


Theorem wlkprop

Description: Properties of a walk. (Contributed by AV, 5-Nov-2021)

Ref Expression
Hypotheses wksfval.v
|- V = ( Vtx ` G )
wksfval.i
|- I = ( iEdg ` G )
Assertion wlkprop
|- ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wksfval.v
 |-  V = ( Vtx ` G )
2 wksfval.i
 |-  I = ( iEdg ` G )
3 1 2 wksfval
 |-  ( G e. _V -> ( Walks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } )
4 3 brfvopab
 |-  ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) )
5 1 2 iswlk
 |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) )
6 5 biimpd
 |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) )
7 4 6 mpcom
 |-  ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) )