Description: A walk connects vertices. (Contributed by AV, 22-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkpvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | wlkpvtx | |- ( F ( Walks ` G ) P -> ( N e. ( 0 ... ( # ` F ) ) -> ( P ` N ) e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkpvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 3 | ffvelcdm | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ N e. ( 0 ... ( # ` F ) ) ) -> ( P ` N ) e. V ) |
|
| 4 | 3 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> V -> ( N e. ( 0 ... ( # ` F ) ) -> ( P ` N ) e. V ) ) |
| 5 | 2 4 | syl | |- ( F ( Walks ` G ) P -> ( N e. ( 0 ... ( # ` F ) ) -> ( P ` N ) e. V ) ) |