Step |
Hyp |
Ref |
Expression |
1 |
|
wlkres.v |
|- V = ( Vtx ` G ) |
2 |
|
wlkres.i |
|- I = ( iEdg ` G ) |
3 |
|
wlkres.d |
|- ( ph -> F ( Walks ` G ) P ) |
4 |
|
wlkres.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
wlkres.s |
|- ( ph -> ( Vtx ` S ) = V ) |
6 |
|
ax-1 |
|- ( S e. _V -> ( ph -> S e. _V ) ) |
7 |
|
df-nel |
|- ( S e/ _V <-> -. S e. _V ) |
8 |
|
df-br |
|- ( F ( Walks ` G ) P <-> <. F , P >. e. ( Walks ` G ) ) |
9 |
|
ne0i |
|- ( <. F , P >. e. ( Walks ` G ) -> ( Walks ` G ) =/= (/) ) |
10 |
5 1
|
eqtrdi |
|- ( ph -> ( Vtx ` S ) = ( Vtx ` G ) ) |
11 |
10
|
anim1ci |
|- ( ( ph /\ S e/ _V ) -> ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) ) |
12 |
|
wlk0prc |
|- ( ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) -> ( Walks ` G ) = (/) ) |
13 |
|
eqneqall |
|- ( ( Walks ` G ) = (/) -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) |
14 |
11 12 13
|
3syl |
|- ( ( ph /\ S e/ _V ) -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) |
15 |
14
|
expcom |
|- ( S e/ _V -> ( ph -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) ) |
16 |
15
|
com13 |
|- ( ( Walks ` G ) =/= (/) -> ( ph -> ( S e/ _V -> S e. _V ) ) ) |
17 |
9 16
|
syl |
|- ( <. F , P >. e. ( Walks ` G ) -> ( ph -> ( S e/ _V -> S e. _V ) ) ) |
18 |
8 17
|
sylbi |
|- ( F ( Walks ` G ) P -> ( ph -> ( S e/ _V -> S e. _V ) ) ) |
19 |
3 18
|
mpcom |
|- ( ph -> ( S e/ _V -> S e. _V ) ) |
20 |
19
|
com12 |
|- ( S e/ _V -> ( ph -> S e. _V ) ) |
21 |
7 20
|
sylbir |
|- ( -. S e. _V -> ( ph -> S e. _V ) ) |
22 |
6 21
|
pm2.61i |
|- ( ph -> S e. _V ) |