| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> ( Vtx ` G ) e. Fin ) |
| 3 |
2
|
adantr |
|- ( ( G e. FinUSGraph /\ N e. NN0 ) -> ( Vtx ` G ) e. Fin ) |
| 4 |
|
wwlksnfi |
|- ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin ) |
| 5 |
3 4
|
syl |
|- ( ( G e. FinUSGraph /\ N e. NN0 ) -> ( N WWalksN G ) e. Fin ) |
| 6 |
|
fusgrusgr |
|- ( G e. FinUSGraph -> G e. USGraph ) |
| 7 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
| 8 |
6 7
|
syl |
|- ( G e. FinUSGraph -> G e. USPGraph ) |
| 9 |
|
wlknwwlksnen |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) |
| 10 |
8 9
|
sylan |
|- ( ( G e. FinUSGraph /\ N e. NN0 ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) |
| 11 |
|
enfii |
|- ( ( ( N WWalksN G ) e. Fin /\ { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } ~~ ( N WWalksN G ) ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } e. Fin ) |
| 12 |
5 10 11
|
syl2anc |
|- ( ( G e. FinUSGraph /\ N e. NN0 ) -> { p e. ( Walks ` G ) | ( # ` ( 1st ` p ) ) = N } e. Fin ) |