| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( Walks ` G ) e. _V |
| 2 |
1
|
mptrabex |
|- ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) e. _V |
| 3 |
2
|
resex |
|- ( ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |` { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } ) e. _V |
| 4 |
|
eqid |
|- ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) = ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |
| 5 |
|
eqid |
|- { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } = { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |
| 6 |
|
eqid |
|- ( N WWalksN G ) = ( N WWalksN G ) |
| 7 |
5 6 4
|
wlknwwlksnbij |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) : { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } -1-1-onto-> ( N WWalksN G ) ) |
| 8 |
|
fveq1 |
|- ( w = ( 2nd ` p ) -> ( w ` 0 ) = ( ( 2nd ` p ) ` 0 ) ) |
| 9 |
8
|
eqeq1d |
|- ( w = ( 2nd ` p ) -> ( ( w ` 0 ) = X <-> ( ( 2nd ` p ) ` 0 ) = X ) ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( ( G e. USPGraph /\ N e. NN0 ) /\ p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } /\ w = ( 2nd ` p ) ) -> ( ( w ` 0 ) = X <-> ( ( 2nd ` p ) ` 0 ) = X ) ) |
| 11 |
4 7 10
|
f1oresrab |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> ( ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |` { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } ) : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) |
| 12 |
|
f1oeq1 |
|- ( f = ( ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |` { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } ) -> ( f : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } <-> ( ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |` { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } ) : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) ) |
| 13 |
12
|
spcegv |
|- ( ( ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |` { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } ) e. _V -> ( ( ( p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } |-> ( 2nd ` p ) ) |` { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } ) : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } -> E. f f : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) ) |
| 14 |
3 11 13
|
mpsyl |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> E. f f : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) |
| 15 |
|
2fveq3 |
|- ( p = q -> ( # ` ( 1st ` p ) ) = ( # ` ( 1st ` q ) ) ) |
| 16 |
15
|
eqeq1d |
|- ( p = q -> ( ( # ` ( 1st ` p ) ) = N <-> ( # ` ( 1st ` q ) ) = N ) ) |
| 17 |
16
|
rabrabi |
|- { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } = { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } |
| 18 |
17
|
eqcomi |
|- { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } = { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } |
| 19 |
|
f1oeq2 |
|- ( { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } = { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -> ( f : { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } <-> f : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) ) |
| 20 |
18 19
|
mp1i |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> ( f : { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } <-> f : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) ) |
| 21 |
20
|
exbidv |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> ( E. f f : { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } <-> E. f f : { p e. { q e. ( Walks ` G ) | ( # ` ( 1st ` q ) ) = N } | ( ( 2nd ` p ) ` 0 ) = X } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) ) |
| 22 |
14 21
|
mpbird |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> E. f f : { p e. ( Walks ` G ) | ( ( # ` ( 1st ` p ) ) = N /\ ( ( 2nd ` p ) ` 0 ) = X ) } -1-1-onto-> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) |