Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
wlkonprop |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
3 |
1
|
wlkonprop |
|- ( H ( C ( WalksOn ` G ) D ) P -> ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) ) |
4 |
|
simp2 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) |
5 |
4
|
eqcomd |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> A = ( P ` 0 ) ) |
6 |
|
simp2 |
|- ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) -> ( P ` 0 ) = C ) |
7 |
5 6
|
sylan9eqr |
|- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> A = C ) |
8 |
|
simp3 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) |
9 |
8
|
eqcomd |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> B = ( P ` ( # ` F ) ) ) |
10 |
9
|
adantl |
|- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> B = ( P ` ( # ` F ) ) ) |
11 |
|
wlklenvm1 |
|- ( H ( Walks ` G ) P -> ( # ` H ) = ( ( # ` P ) - 1 ) ) |
12 |
|
wlklenvm1 |
|- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
13 |
|
eqtr3 |
|- ( ( ( # ` F ) = ( ( # ` P ) - 1 ) /\ ( # ` H ) = ( ( # ` P ) - 1 ) ) -> ( # ` F ) = ( # ` H ) ) |
14 |
13
|
fveq2d |
|- ( ( ( # ` F ) = ( ( # ` P ) - 1 ) /\ ( # ` H ) = ( ( # ` P ) - 1 ) ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) |
15 |
14
|
ex |
|- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
16 |
12 15
|
syl |
|- ( F ( Walks ` G ) P -> ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
18 |
17
|
com12 |
|- ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
19 |
11 18
|
syl |
|- ( H ( Walks ` G ) P -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
20 |
19
|
3ad2ant1 |
|- ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
21 |
20
|
imp |
|- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) |
22 |
|
simpl3 |
|- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P ` ( # ` H ) ) = D ) |
23 |
10 21 22
|
3eqtrd |
|- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> B = D ) |
24 |
7 23
|
jca |
|- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( A = C /\ B = D ) ) |
25 |
24
|
ex |
|- ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A = C /\ B = D ) ) ) |
26 |
25
|
3ad2ant3 |
|- ( ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A = C /\ B = D ) ) ) |
27 |
26
|
com12 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) -> ( A = C /\ B = D ) ) ) |
28 |
27
|
3ad2ant3 |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) -> ( A = C /\ B = D ) ) ) |
29 |
28
|
imp |
|- ( ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) ) -> ( A = C /\ B = D ) ) |
30 |
2 3 29
|
syl2an |
|- ( ( F ( A ( WalksOn ` G ) B ) P /\ H ( C ( WalksOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) |