| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkswwlksf1o.f |  |-  F = ( w e. ( Walks ` G ) |-> ( 2nd ` w ) ) | 
						
							| 2 |  | fvex |  |-  ( 1st ` w ) e. _V | 
						
							| 3 |  | breq1 |  |-  ( f = ( 1st ` w ) -> ( f ( Walks ` G ) ( 2nd ` w ) <-> ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) ) ) | 
						
							| 4 | 2 3 | spcev |  |-  ( ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) -> E. f f ( Walks ` G ) ( 2nd ` w ) ) | 
						
							| 5 |  | wlkiswwlks |  |-  ( G e. USPGraph -> ( E. f f ( Walks ` G ) ( 2nd ` w ) <-> ( 2nd ` w ) e. ( WWalks ` G ) ) ) | 
						
							| 6 | 4 5 | imbitrid |  |-  ( G e. USPGraph -> ( ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) -> ( 2nd ` w ) e. ( WWalks ` G ) ) ) | 
						
							| 7 |  | wlkcpr |  |-  ( w e. ( Walks ` G ) <-> ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) ) | 
						
							| 8 | 7 | biimpi |  |-  ( w e. ( Walks ` G ) -> ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) ) | 
						
							| 9 | 6 8 | impel |  |-  ( ( G e. USPGraph /\ w e. ( Walks ` G ) ) -> ( 2nd ` w ) e. ( WWalks ` G ) ) | 
						
							| 10 | 9 1 | fmptd |  |-  ( G e. USPGraph -> F : ( Walks ` G ) --> ( WWalks ` G ) ) | 
						
							| 11 |  | simpr |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) --> ( WWalks ` G ) ) | 
						
							| 12 |  | fveq2 |  |-  ( w = x -> ( 2nd ` w ) = ( 2nd ` x ) ) | 
						
							| 13 |  | id |  |-  ( x e. ( Walks ` G ) -> x e. ( Walks ` G ) ) | 
						
							| 14 |  | fvexd |  |-  ( x e. ( Walks ` G ) -> ( 2nd ` x ) e. _V ) | 
						
							| 15 | 1 12 13 14 | fvmptd3 |  |-  ( x e. ( Walks ` G ) -> ( F ` x ) = ( 2nd ` x ) ) | 
						
							| 16 |  | fveq2 |  |-  ( w = y -> ( 2nd ` w ) = ( 2nd ` y ) ) | 
						
							| 17 |  | id |  |-  ( y e. ( Walks ` G ) -> y e. ( Walks ` G ) ) | 
						
							| 18 |  | fvexd |  |-  ( y e. ( Walks ` G ) -> ( 2nd ` y ) e. _V ) | 
						
							| 19 | 1 16 17 18 | fvmptd3 |  |-  ( y e. ( Walks ` G ) -> ( F ` y ) = ( 2nd ` y ) ) | 
						
							| 20 | 15 19 | eqeqan12d |  |-  ( ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) | 
						
							| 22 |  | uspgr2wlkeqi |  |-  ( ( G e. USPGraph /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) | 
						
							| 23 | 22 | ad4ant134 |  |-  ( ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) | 
						
							| 24 | 23 | ex |  |-  ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) | 
						
							| 25 | 21 24 | sylbid |  |-  ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) | 
						
							| 26 | 25 | ralrimivva |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> A. x e. ( Walks ` G ) A. y e. ( Walks ` G ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) | 
						
							| 27 |  | dff13 |  |-  ( F : ( Walks ` G ) -1-1-> ( WWalks ` G ) <-> ( F : ( Walks ` G ) --> ( WWalks ` G ) /\ A. x e. ( Walks ` G ) A. y e. ( Walks ` G ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 28 | 11 26 27 | sylanbrc |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) -1-1-> ( WWalks ` G ) ) | 
						
							| 29 |  | wlkiswwlks |  |-  ( G e. USPGraph -> ( E. f f ( Walks ` G ) y <-> y e. ( WWalks ` G ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> ( E. f f ( Walks ` G ) y <-> y e. ( WWalks ` G ) ) ) | 
						
							| 31 |  | df-br |  |-  ( f ( Walks ` G ) y <-> <. f , y >. e. ( Walks ` G ) ) | 
						
							| 32 |  | vex |  |-  f e. _V | 
						
							| 33 |  | vex |  |-  y e. _V | 
						
							| 34 | 32 33 | op2nd |  |-  ( 2nd ` <. f , y >. ) = y | 
						
							| 35 | 34 | eqcomi |  |-  y = ( 2nd ` <. f , y >. ) | 
						
							| 36 |  | opex |  |-  <. f , y >. e. _V | 
						
							| 37 |  | eleq1 |  |-  ( x = <. f , y >. -> ( x e. ( Walks ` G ) <-> <. f , y >. e. ( Walks ` G ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( x = <. f , y >. -> ( 2nd ` x ) = ( 2nd ` <. f , y >. ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( x = <. f , y >. -> ( y = ( 2nd ` x ) <-> y = ( 2nd ` <. f , y >. ) ) ) | 
						
							| 40 | 37 39 | anbi12d |  |-  ( x = <. f , y >. -> ( ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) <-> ( <. f , y >. e. ( Walks ` G ) /\ y = ( 2nd ` <. f , y >. ) ) ) ) | 
						
							| 41 | 36 40 | spcev |  |-  ( ( <. f , y >. e. ( Walks ` G ) /\ y = ( 2nd ` <. f , y >. ) ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) | 
						
							| 42 | 35 41 | mpan2 |  |-  ( <. f , y >. e. ( Walks ` G ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) | 
						
							| 43 | 31 42 | sylbi |  |-  ( f ( Walks ` G ) y -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) | 
						
							| 44 | 43 | exlimiv |  |-  ( E. f f ( Walks ` G ) y -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) | 
						
							| 45 | 30 44 | biimtrrdi |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> ( y e. ( WWalks ` G ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) ) | 
						
							| 46 | 45 | imp |  |-  ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ y e. ( WWalks ` G ) ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) | 
						
							| 47 |  | df-rex |  |-  ( E. x e. ( Walks ` G ) y = ( 2nd ` x ) <-> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ y e. ( WWalks ` G ) ) -> E. x e. ( Walks ` G ) y = ( 2nd ` x ) ) | 
						
							| 49 | 15 | eqeq2d |  |-  ( x e. ( Walks ` G ) -> ( y = ( F ` x ) <-> y = ( 2nd ` x ) ) ) | 
						
							| 50 | 49 | rexbiia |  |-  ( E. x e. ( Walks ` G ) y = ( F ` x ) <-> E. x e. ( Walks ` G ) y = ( 2nd ` x ) ) | 
						
							| 51 | 48 50 | sylibr |  |-  ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ y e. ( WWalks ` G ) ) -> E. x e. ( Walks ` G ) y = ( F ` x ) ) | 
						
							| 52 | 51 | ralrimiva |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> A. y e. ( WWalks ` G ) E. x e. ( Walks ` G ) y = ( F ` x ) ) | 
						
							| 53 |  | dffo3 |  |-  ( F : ( Walks ` G ) -onto-> ( WWalks ` G ) <-> ( F : ( Walks ` G ) --> ( WWalks ` G ) /\ A. y e. ( WWalks ` G ) E. x e. ( Walks ` G ) y = ( F ` x ) ) ) | 
						
							| 54 | 11 52 53 | sylanbrc |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) -onto-> ( WWalks ` G ) ) | 
						
							| 55 |  | df-f1o |  |-  ( F : ( Walks ` G ) -1-1-onto-> ( WWalks ` G ) <-> ( F : ( Walks ` G ) -1-1-> ( WWalks ` G ) /\ F : ( Walks ` G ) -onto-> ( WWalks ` G ) ) ) | 
						
							| 56 | 28 54 55 | sylanbrc |  |-  ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) -1-1-onto-> ( WWalks ` G ) ) | 
						
							| 57 | 10 56 | mpdan |  |-  ( G e. USPGraph -> F : ( Walks ` G ) -1-1-onto-> ( WWalks ` G ) ) |