Step |
Hyp |
Ref |
Expression |
1 |
|
wlkswwlksf1o.f |
|- F = ( w e. ( Walks ` G ) |-> ( 2nd ` w ) ) |
2 |
|
fvex |
|- ( 1st ` w ) e. _V |
3 |
|
breq1 |
|- ( f = ( 1st ` w ) -> ( f ( Walks ` G ) ( 2nd ` w ) <-> ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) ) ) |
4 |
2 3
|
spcev |
|- ( ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) -> E. f f ( Walks ` G ) ( 2nd ` w ) ) |
5 |
|
wlkiswwlks |
|- ( G e. USPGraph -> ( E. f f ( Walks ` G ) ( 2nd ` w ) <-> ( 2nd ` w ) e. ( WWalks ` G ) ) ) |
6 |
4 5
|
syl5ib |
|- ( G e. USPGraph -> ( ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) -> ( 2nd ` w ) e. ( WWalks ` G ) ) ) |
7 |
|
wlkcpr |
|- ( w e. ( Walks ` G ) <-> ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) ) |
8 |
7
|
biimpi |
|- ( w e. ( Walks ` G ) -> ( 1st ` w ) ( Walks ` G ) ( 2nd ` w ) ) |
9 |
6 8
|
impel |
|- ( ( G e. USPGraph /\ w e. ( Walks ` G ) ) -> ( 2nd ` w ) e. ( WWalks ` G ) ) |
10 |
9 1
|
fmptd |
|- ( G e. USPGraph -> F : ( Walks ` G ) --> ( WWalks ` G ) ) |
11 |
|
simpr |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) --> ( WWalks ` G ) ) |
12 |
|
fveq2 |
|- ( w = x -> ( 2nd ` w ) = ( 2nd ` x ) ) |
13 |
|
id |
|- ( x e. ( Walks ` G ) -> x e. ( Walks ` G ) ) |
14 |
|
fvexd |
|- ( x e. ( Walks ` G ) -> ( 2nd ` x ) e. _V ) |
15 |
1 12 13 14
|
fvmptd3 |
|- ( x e. ( Walks ` G ) -> ( F ` x ) = ( 2nd ` x ) ) |
16 |
|
fveq2 |
|- ( w = y -> ( 2nd ` w ) = ( 2nd ` y ) ) |
17 |
|
id |
|- ( y e. ( Walks ` G ) -> y e. ( Walks ` G ) ) |
18 |
|
fvexd |
|- ( y e. ( Walks ` G ) -> ( 2nd ` y ) e. _V ) |
19 |
1 16 17 18
|
fvmptd3 |
|- ( y e. ( Walks ` G ) -> ( F ` y ) = ( 2nd ` y ) ) |
20 |
15 19
|
eqeqan12d |
|- ( ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
21 |
20
|
adantl |
|- ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
22 |
|
uspgr2wlkeqi |
|- ( ( G e. USPGraph /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) |
23 |
22
|
ad4ant134 |
|- ( ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) |
24 |
23
|
ex |
|- ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) |
25 |
21 24
|
sylbid |
|- ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ ( x e. ( Walks ` G ) /\ y e. ( Walks ` G ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
26 |
25
|
ralrimivva |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> A. x e. ( Walks ` G ) A. y e. ( Walks ` G ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
27 |
|
dff13 |
|- ( F : ( Walks ` G ) -1-1-> ( WWalks ` G ) <-> ( F : ( Walks ` G ) --> ( WWalks ` G ) /\ A. x e. ( Walks ` G ) A. y e. ( Walks ` G ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
28 |
11 26 27
|
sylanbrc |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) -1-1-> ( WWalks ` G ) ) |
29 |
|
wlkiswwlks |
|- ( G e. USPGraph -> ( E. f f ( Walks ` G ) y <-> y e. ( WWalks ` G ) ) ) |
30 |
29
|
adantr |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> ( E. f f ( Walks ` G ) y <-> y e. ( WWalks ` G ) ) ) |
31 |
|
df-br |
|- ( f ( Walks ` G ) y <-> <. f , y >. e. ( Walks ` G ) ) |
32 |
|
vex |
|- f e. _V |
33 |
|
vex |
|- y e. _V |
34 |
32 33
|
op2nd |
|- ( 2nd ` <. f , y >. ) = y |
35 |
34
|
eqcomi |
|- y = ( 2nd ` <. f , y >. ) |
36 |
|
opex |
|- <. f , y >. e. _V |
37 |
|
eleq1 |
|- ( x = <. f , y >. -> ( x e. ( Walks ` G ) <-> <. f , y >. e. ( Walks ` G ) ) ) |
38 |
|
fveq2 |
|- ( x = <. f , y >. -> ( 2nd ` x ) = ( 2nd ` <. f , y >. ) ) |
39 |
38
|
eqeq2d |
|- ( x = <. f , y >. -> ( y = ( 2nd ` x ) <-> y = ( 2nd ` <. f , y >. ) ) ) |
40 |
37 39
|
anbi12d |
|- ( x = <. f , y >. -> ( ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) <-> ( <. f , y >. e. ( Walks ` G ) /\ y = ( 2nd ` <. f , y >. ) ) ) ) |
41 |
36 40
|
spcev |
|- ( ( <. f , y >. e. ( Walks ` G ) /\ y = ( 2nd ` <. f , y >. ) ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) |
42 |
35 41
|
mpan2 |
|- ( <. f , y >. e. ( Walks ` G ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) |
43 |
31 42
|
sylbi |
|- ( f ( Walks ` G ) y -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) |
44 |
43
|
exlimiv |
|- ( E. f f ( Walks ` G ) y -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) |
45 |
30 44
|
syl6bir |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> ( y e. ( WWalks ` G ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) ) |
46 |
45
|
imp |
|- ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ y e. ( WWalks ` G ) ) -> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) |
47 |
|
df-rex |
|- ( E. x e. ( Walks ` G ) y = ( 2nd ` x ) <-> E. x ( x e. ( Walks ` G ) /\ y = ( 2nd ` x ) ) ) |
48 |
46 47
|
sylibr |
|- ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ y e. ( WWalks ` G ) ) -> E. x e. ( Walks ` G ) y = ( 2nd ` x ) ) |
49 |
15
|
eqeq2d |
|- ( x e. ( Walks ` G ) -> ( y = ( F ` x ) <-> y = ( 2nd ` x ) ) ) |
50 |
49
|
rexbiia |
|- ( E. x e. ( Walks ` G ) y = ( F ` x ) <-> E. x e. ( Walks ` G ) y = ( 2nd ` x ) ) |
51 |
48 50
|
sylibr |
|- ( ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) /\ y e. ( WWalks ` G ) ) -> E. x e. ( Walks ` G ) y = ( F ` x ) ) |
52 |
51
|
ralrimiva |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> A. y e. ( WWalks ` G ) E. x e. ( Walks ` G ) y = ( F ` x ) ) |
53 |
|
dffo3 |
|- ( F : ( Walks ` G ) -onto-> ( WWalks ` G ) <-> ( F : ( Walks ` G ) --> ( WWalks ` G ) /\ A. y e. ( WWalks ` G ) E. x e. ( Walks ` G ) y = ( F ` x ) ) ) |
54 |
11 52 53
|
sylanbrc |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) -onto-> ( WWalks ` G ) ) |
55 |
|
df-f1o |
|- ( F : ( Walks ` G ) -1-1-onto-> ( WWalks ` G ) <-> ( F : ( Walks ` G ) -1-1-> ( WWalks ` G ) /\ F : ( Walks ` G ) -onto-> ( WWalks ` G ) ) ) |
56 |
28 54 55
|
sylanbrc |
|- ( ( G e. USPGraph /\ F : ( Walks ` G ) --> ( WWalks ` G ) ) -> F : ( Walks ` G ) -1-1-onto-> ( WWalks ` G ) ) |
57 |
10 56
|
mpdan |
|- ( G e. USPGraph -> F : ( Walks ` G ) -1-1-onto-> ( WWalks ` G ) ) |