Description: The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 3-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
3 | 1 2 | wksfval | |- ( G e. _V -> ( Walks ` G ) = { <. f , p >. | ( f e. Word dom ( iEdg ` G ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( f ` k ) ) ) ) } ) |
4 | 3 | brfvopab | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |