| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkvtxedg.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 3 | 2 | wlkvtxiedg |  |-  ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran ( iEdg ` G ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 4 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 5 | 1 4 | eqtr2i |  |-  ran ( iEdg ` G ) = E | 
						
							| 6 | 5 | rexeqi |  |-  ( E. e e. ran ( iEdg ` G ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 7 | 6 | ralbii |  |-  ( A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran ( iEdg ` G ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 8 | 3 7 | sylib |  |-  ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |