Step |
Hyp |
Ref |
Expression |
1 |
|
wlkvtxeledg.i |
|- I = ( iEdg ` G ) |
2 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
4 |
3 1
|
iswlk |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
5 |
|
ifpsnprss |
|- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
6 |
5
|
ralimi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
7 |
6
|
3ad2ant3 |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
8 |
4 7
|
syl6bi |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
9 |
2 8
|
mpcom |
|- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |