| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkvtxeledg.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 | 1 | wlkvtxeledg |  |-  ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) | 
						
							| 3 |  | fvex |  |-  ( P ` k ) e. _V | 
						
							| 4 | 3 | prnz |  |-  { ( P ` k ) , ( P ` ( k + 1 ) ) } =/= (/) | 
						
							| 5 |  | ssn0 |  |-  ( ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } =/= (/) ) -> ( I ` ( F ` k ) ) =/= (/) ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> ( I ` ( F ` k ) ) =/= (/) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) =/= (/) ) | 
						
							| 8 |  | fvn0fvelrn |  |-  ( ( I ` ( F ` k ) ) =/= (/) -> ( I ` ( F ` k ) ) e. ran I ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) e. ran I ) | 
						
							| 10 |  | sseq2 |  |-  ( e = ( I ` ( F ` k ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ e = ( I ` ( F ` k ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) | 
						
							| 13 | 9 11 12 | rspcedvd |  |-  ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) | 
						
							| 14 | 13 | ex |  |-  ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) ) | 
						
							| 15 | 14 | ralimdva |  |-  ( F ( Walks ` G ) P -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) ) | 
						
							| 16 | 2 15 | mpd |  |-  ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |