Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknon |
|- ( w e. ( A ( 2 WWalksNOn G ) B ) <-> ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) |
2 |
1
|
a1i |
|- ( ( G e. USGraph /\ A =/= B ) -> ( w e. ( A ( 2 WWalksNOn G ) B ) <-> ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) ) |
3 |
2
|
anbi1d |
|- ( ( G e. USGraph /\ A =/= B ) -> ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
4 |
|
3anass |
|- ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) ) |
5 |
4
|
anbi1i |
|- ( ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( ( w e. ( 2 WWalksN G ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) |
6 |
|
anass |
|- ( ( ( w e. ( 2 WWalksN G ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
7 |
5 6
|
bitri |
|- ( ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
8 |
3 7
|
bitrdi |
|- ( ( G e. USGraph /\ A =/= B ) -> ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) ) |
9 |
8
|
rabbidva2 |
|- ( ( G e. USGraph /\ A =/= B ) -> { w e. ( A ( 2 WWalksNOn G ) B ) | E. f f ( A ( SPathsOn ` G ) B ) w } = { w e. ( 2 WWalksN G ) | ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) } ) |
10 |
|
usgrupgr |
|- ( G e. USGraph -> G e. UPGraph ) |
11 |
|
wlklnwwlknupgr |
|- ( G e. UPGraph -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) <-> w e. ( 2 WWalksN G ) ) ) |
12 |
10 11
|
syl |
|- ( G e. USGraph -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) <-> w e. ( 2 WWalksN G ) ) ) |
13 |
12
|
bicomd |
|- ( G e. USGraph -> ( w e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) ) |
14 |
13
|
adantr |
|- ( ( G e. USGraph /\ A =/= B ) -> ( w e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) ) |
15 |
|
simprl |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> f ( Walks ` G ) w ) |
16 |
|
simprl |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( w ` 0 ) = A ) |
17 |
16
|
adantr |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` 0 ) = A ) |
18 |
|
fveq2 |
|- ( ( # ` f ) = 2 -> ( w ` ( # ` f ) ) = ( w ` 2 ) ) |
19 |
18
|
ad2antll |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` ( # ` f ) ) = ( w ` 2 ) ) |
20 |
|
simprr |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( w ` 2 ) = B ) |
21 |
20
|
adantr |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` 2 ) = B ) |
22 |
19 21
|
eqtrd |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` ( # ` f ) ) = B ) |
23 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
24 |
23
|
wlkp |
|- ( f ( Walks ` G ) w -> w : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) |
25 |
|
oveq2 |
|- ( ( # ` f ) = 2 -> ( 0 ... ( # ` f ) ) = ( 0 ... 2 ) ) |
26 |
25
|
feq2d |
|- ( ( # ` f ) = 2 -> ( w : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) <-> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) ) |
27 |
24 26
|
syl5ibcom |
|- ( f ( Walks ` G ) w -> ( ( # ` f ) = 2 -> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) ) |
28 |
27
|
imp |
|- ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) |
29 |
|
id |
|- ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) |
30 |
|
2nn0 |
|- 2 e. NN0 |
31 |
|
0elfz |
|- ( 2 e. NN0 -> 0 e. ( 0 ... 2 ) ) |
32 |
30 31
|
mp1i |
|- ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> 0 e. ( 0 ... 2 ) ) |
33 |
29 32
|
ffvelrnd |
|- ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
34 |
|
nn0fz0 |
|- ( 2 e. NN0 <-> 2 e. ( 0 ... 2 ) ) |
35 |
30 34
|
mpbi |
|- 2 e. ( 0 ... 2 ) |
36 |
35
|
a1i |
|- ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> 2 e. ( 0 ... 2 ) ) |
37 |
29 36
|
ffvelrnd |
|- ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( w ` 2 ) e. ( Vtx ` G ) ) |
38 |
33 37
|
jca |
|- ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( w ` 0 ) e. ( Vtx ` G ) /\ ( w ` 2 ) e. ( Vtx ` G ) ) ) |
39 |
28 38
|
syl |
|- ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( ( w ` 0 ) e. ( Vtx ` G ) /\ ( w ` 2 ) e. ( Vtx ` G ) ) ) |
40 |
|
eleq1 |
|- ( ( w ` 0 ) = A -> ( ( w ` 0 ) e. ( Vtx ` G ) <-> A e. ( Vtx ` G ) ) ) |
41 |
|
eleq1 |
|- ( ( w ` 2 ) = B -> ( ( w ` 2 ) e. ( Vtx ` G ) <-> B e. ( Vtx ` G ) ) ) |
42 |
40 41
|
bi2anan9 |
|- ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> ( ( ( w ` 0 ) e. ( Vtx ` G ) /\ ( w ` 2 ) e. ( Vtx ` G ) ) <-> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) |
43 |
39 42
|
syl5ib |
|- ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) |
44 |
43
|
adantl |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) |
45 |
44
|
imp |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
46 |
|
vex |
|- f e. _V |
47 |
|
vex |
|- w e. _V |
48 |
46 47
|
pm3.2i |
|- ( f e. _V /\ w e. _V ) |
49 |
23
|
iswlkon |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( f e. _V /\ w e. _V ) ) -> ( f ( A ( WalksOn ` G ) B ) w <-> ( f ( Walks ` G ) w /\ ( w ` 0 ) = A /\ ( w ` ( # ` f ) ) = B ) ) ) |
50 |
45 48 49
|
sylancl |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( f ( A ( WalksOn ` G ) B ) w <-> ( f ( Walks ` G ) w /\ ( w ` 0 ) = A /\ ( w ` ( # ` f ) ) = B ) ) ) |
51 |
15 17 22 50
|
mpbir3and |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> f ( A ( WalksOn ` G ) B ) w ) |
52 |
|
simplll |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> G e. USGraph ) |
53 |
|
simprr |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( # ` f ) = 2 ) |
54 |
|
simpllr |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> A =/= B ) |
55 |
|
usgr2wlkspth |
|- ( ( G e. USGraph /\ ( # ` f ) = 2 /\ A =/= B ) -> ( f ( A ( WalksOn ` G ) B ) w <-> f ( A ( SPathsOn ` G ) B ) w ) ) |
56 |
52 53 54 55
|
syl3anc |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( f ( A ( WalksOn ` G ) B ) w <-> f ( A ( SPathsOn ` G ) B ) w ) ) |
57 |
51 56
|
mpbid |
|- ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> f ( A ( SPathsOn ` G ) B ) w ) |
58 |
57
|
ex |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> f ( A ( SPathsOn ` G ) B ) w ) ) |
59 |
58
|
eximdv |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) |
60 |
59
|
ex |
|- ( ( G e. USGraph /\ A =/= B ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
61 |
60
|
com23 |
|- ( ( G e. USGraph /\ A =/= B ) -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
62 |
14 61
|
sylbid |
|- ( ( G e. USGraph /\ A =/= B ) -> ( w e. ( 2 WWalksN G ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
63 |
62
|
imp |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ w e. ( 2 WWalksN G ) ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) |
64 |
63
|
pm4.71d |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ w e. ( 2 WWalksN G ) ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) <-> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) |
65 |
64
|
bicomd |
|- ( ( ( G e. USGraph /\ A =/= B ) /\ w e. ( 2 WWalksN G ) ) -> ( ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) ) |
66 |
65
|
rabbidva |
|- ( ( G e. USGraph /\ A =/= B ) -> { w e. ( 2 WWalksN G ) | ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) } = { w e. ( 2 WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) } ) |
67 |
9 66
|
eqtrd |
|- ( ( G e. USGraph /\ A =/= B ) -> { w e. ( A ( 2 WWalksNOn G ) B ) | E. f f ( A ( SPathsOn ` G ) B ) w } = { w e. ( 2 WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) } ) |
68 |
23
|
iswspthsnon |
|- ( A ( 2 WSPathsNOn G ) B ) = { w e. ( A ( 2 WWalksNOn G ) B ) | E. f f ( A ( SPathsOn ` G ) B ) w } |
69 |
23
|
iswwlksnon |
|- ( A ( 2 WWalksNOn G ) B ) = { w e. ( 2 WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) } |
70 |
67 68 69
|
3eqtr4g |
|- ( ( G e. USGraph /\ A =/= B ) -> ( A ( 2 WSPathsNOn G ) B ) = ( A ( 2 WWalksNOn G ) B ) ) |