Step |
Hyp |
Ref |
Expression |
1 |
|
wrdexg |
|- ( V e. Y -> Word V e. _V ) |
2 |
1
|
adantr |
|- ( ( V e. Y /\ P e. V ) -> Word V e. _V ) |
3 |
|
rabexg |
|- ( Word V e. _V -> { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } e. _V ) |
4 |
|
mptexg |
|- ( { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } e. _V -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) e. _V ) |
5 |
2 3 4
|
3syl |
|- ( ( V e. Y /\ P e. V ) -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) e. _V ) |
6 |
|
fveqeq2 |
|- ( w = u -> ( ( # ` w ) = 2 <-> ( # ` u ) = 2 ) ) |
7 |
|
fveq1 |
|- ( w = u -> ( w ` 0 ) = ( u ` 0 ) ) |
8 |
7
|
eqeq1d |
|- ( w = u -> ( ( w ` 0 ) = P <-> ( u ` 0 ) = P ) ) |
9 |
|
fveq1 |
|- ( w = u -> ( w ` 1 ) = ( u ` 1 ) ) |
10 |
7 9
|
preq12d |
|- ( w = u -> { ( w ` 0 ) , ( w ` 1 ) } = { ( u ` 0 ) , ( u ` 1 ) } ) |
11 |
10
|
eleq1d |
|- ( w = u -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
12 |
6 8 11
|
3anbi123d |
|- ( w = u -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
13 |
12
|
cbvrabv |
|- { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } = { u e. Word V | ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) } |
14 |
|
preq2 |
|- ( n = p -> { P , n } = { P , p } ) |
15 |
14
|
eleq1d |
|- ( n = p -> ( { P , n } e. X <-> { P , p } e. X ) ) |
16 |
15
|
cbvrabv |
|- { n e. V | { P , n } e. X } = { p e. V | { P , p } e. X } |
17 |
|
fveqeq2 |
|- ( t = w -> ( ( # ` t ) = 2 <-> ( # ` w ) = 2 ) ) |
18 |
|
fveq1 |
|- ( t = w -> ( t ` 0 ) = ( w ` 0 ) ) |
19 |
18
|
eqeq1d |
|- ( t = w -> ( ( t ` 0 ) = P <-> ( w ` 0 ) = P ) ) |
20 |
|
fveq1 |
|- ( t = w -> ( t ` 1 ) = ( w ` 1 ) ) |
21 |
18 20
|
preq12d |
|- ( t = w -> { ( t ` 0 ) , ( t ` 1 ) } = { ( w ` 0 ) , ( w ` 1 ) } ) |
22 |
21
|
eleq1d |
|- ( t = w -> ( { ( t ` 0 ) , ( t ` 1 ) } e. X <-> { ( w ` 0 ) , ( w ` 1 ) } e. X ) ) |
23 |
17 19 22
|
3anbi123d |
|- ( t = w -> ( ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) <-> ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) ) ) |
24 |
23
|
cbvrabv |
|- { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
25 |
24
|
mpteq1i |
|- ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) = ( x e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |-> ( x ` 1 ) ) |
26 |
13 16 25
|
wwlktovf1o |
|- ( P e. V -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |
27 |
26
|
adantl |
|- ( ( V e. Y /\ P e. V ) -> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |
28 |
|
f1oeq1 |
|- ( f = ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) -> ( f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } <-> ( x e. { t e. Word V | ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) } |-> ( x ` 1 ) ) : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) ) |
29 |
5 27 28
|
spcedv |
|- ( ( V e. Y /\ P e. V ) -> E. f f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } -1-1-onto-> { n e. V | { P , n } e. X } ) |