| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrd2ind.1 |
|- ( ( x = (/) /\ w = (/) ) -> ( ph <-> ps ) ) |
| 2 |
|
wrd2ind.2 |
|- ( ( x = y /\ w = u ) -> ( ph <-> ch ) ) |
| 3 |
|
wrd2ind.3 |
|- ( ( x = ( y ++ <" z "> ) /\ w = ( u ++ <" s "> ) ) -> ( ph <-> th ) ) |
| 4 |
|
wrd2ind.4 |
|- ( x = A -> ( rh <-> ta ) ) |
| 5 |
|
wrd2ind.5 |
|- ( w = B -> ( ph <-> rh ) ) |
| 6 |
|
wrd2ind.6 |
|- ps |
| 7 |
|
wrd2ind.7 |
|- ( ( ( y e. Word X /\ z e. X ) /\ ( u e. Word Y /\ s e. Y ) /\ ( # ` y ) = ( # ` u ) ) -> ( ch -> th ) ) |
| 8 |
|
lencl |
|- ( A e. Word X -> ( # ` A ) e. NN0 ) |
| 9 |
|
eqeq2 |
|- ( n = 0 -> ( ( # ` x ) = n <-> ( # ` x ) = 0 ) ) |
| 10 |
9
|
anbi2d |
|- ( n = 0 -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) <-> ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = 0 ) ) ) |
| 11 |
10
|
imbi1d |
|- ( n = 0 -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = 0 ) -> ph ) ) ) |
| 12 |
11
|
2ralbidv |
|- ( n = 0 -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = 0 ) -> ph ) ) ) |
| 13 |
|
eqeq2 |
|- ( n = m -> ( ( # ` x ) = n <-> ( # ` x ) = m ) ) |
| 14 |
13
|
anbi2d |
|- ( n = m -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) <-> ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) ) ) |
| 15 |
14
|
imbi1d |
|- ( n = m -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) ) ) |
| 16 |
15
|
2ralbidv |
|- ( n = m -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) ) ) |
| 17 |
|
eqeq2 |
|- ( n = ( m + 1 ) -> ( ( # ` x ) = n <-> ( # ` x ) = ( m + 1 ) ) ) |
| 18 |
17
|
anbi2d |
|- ( n = ( m + 1 ) -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) <-> ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) |
| 19 |
18
|
imbi1d |
|- ( n = ( m + 1 ) -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ph ) ) ) |
| 20 |
19
|
2ralbidv |
|- ( n = ( m + 1 ) -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ph ) ) ) |
| 21 |
|
eqeq2 |
|- ( n = ( # ` A ) -> ( ( # ` x ) = n <-> ( # ` x ) = ( # ` A ) ) ) |
| 22 |
21
|
anbi2d |
|- ( n = ( # ` A ) -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) <-> ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) ) ) |
| 23 |
22
|
imbi1d |
|- ( n = ( # ` A ) -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) ) ) |
| 24 |
23
|
2ralbidv |
|- ( n = ( # ` A ) -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = n ) -> ph ) <-> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) ) ) |
| 25 |
|
eqeq1 |
|- ( ( # ` x ) = 0 -> ( ( # ` x ) = ( # ` w ) <-> 0 = ( # ` w ) ) ) |
| 26 |
25
|
adantl |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ ( # ` x ) = 0 ) -> ( ( # ` x ) = ( # ` w ) <-> 0 = ( # ` w ) ) ) |
| 27 |
|
eqcom |
|- ( 0 = ( # ` w ) <-> ( # ` w ) = 0 ) |
| 28 |
|
hasheq0 |
|- ( w e. Word Y -> ( ( # ` w ) = 0 <-> w = (/) ) ) |
| 29 |
27 28
|
bitrid |
|- ( w e. Word Y -> ( 0 = ( # ` w ) <-> w = (/) ) ) |
| 30 |
|
hasheq0 |
|- ( x e. Word X -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
| 31 |
6 1
|
mpbiri |
|- ( ( x = (/) /\ w = (/) ) -> ph ) |
| 32 |
31
|
ex |
|- ( x = (/) -> ( w = (/) -> ph ) ) |
| 33 |
30 32
|
biimtrdi |
|- ( x e. Word X -> ( ( # ` x ) = 0 -> ( w = (/) -> ph ) ) ) |
| 34 |
33
|
com13 |
|- ( w = (/) -> ( ( # ` x ) = 0 -> ( x e. Word X -> ph ) ) ) |
| 35 |
29 34
|
biimtrdi |
|- ( w e. Word Y -> ( 0 = ( # ` w ) -> ( ( # ` x ) = 0 -> ( x e. Word X -> ph ) ) ) ) |
| 36 |
35
|
com24 |
|- ( w e. Word Y -> ( x e. Word X -> ( ( # ` x ) = 0 -> ( 0 = ( # ` w ) -> ph ) ) ) ) |
| 37 |
36
|
imp31 |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ ( # ` x ) = 0 ) -> ( 0 = ( # ` w ) -> ph ) ) |
| 38 |
26 37
|
sylbid |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ ( # ` x ) = 0 ) -> ( ( # ` x ) = ( # ` w ) -> ph ) ) |
| 39 |
38
|
ex |
|- ( ( w e. Word Y /\ x e. Word X ) -> ( ( # ` x ) = 0 -> ( ( # ` x ) = ( # ` w ) -> ph ) ) ) |
| 40 |
39
|
impcomd |
|- ( ( w e. Word Y /\ x e. Word X ) -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = 0 ) -> ph ) ) |
| 41 |
40
|
rgen2 |
|- A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = 0 ) -> ph ) |
| 42 |
|
fveq2 |
|- ( x = y -> ( # ` x ) = ( # ` y ) ) |
| 43 |
|
fveq2 |
|- ( w = u -> ( # ` w ) = ( # ` u ) ) |
| 44 |
42 43
|
eqeqan12d |
|- ( ( x = y /\ w = u ) -> ( ( # ` x ) = ( # ` w ) <-> ( # ` y ) = ( # ` u ) ) ) |
| 45 |
|
fveqeq2 |
|- ( x = y -> ( ( # ` x ) = m <-> ( # ` y ) = m ) ) |
| 46 |
45
|
adantr |
|- ( ( x = y /\ w = u ) -> ( ( # ` x ) = m <-> ( # ` y ) = m ) ) |
| 47 |
44 46
|
anbi12d |
|- ( ( x = y /\ w = u ) -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) <-> ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) ) ) |
| 48 |
47 2
|
imbi12d |
|- ( ( x = y /\ w = u ) -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) <-> ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) ) |
| 49 |
48
|
ancoms |
|- ( ( w = u /\ x = y ) -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) <-> ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) ) |
| 50 |
49
|
cbvraldva |
|- ( w = u -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) <-> A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) ) |
| 51 |
50
|
cbvralvw |
|- ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) <-> A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) |
| 52 |
|
pfxcl |
|- ( w e. Word Y -> ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y ) |
| 53 |
52
|
adantr |
|- ( ( w e. Word Y /\ x e. Word X ) -> ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y ) |
| 54 |
53
|
ad2antrl |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y ) |
| 55 |
|
simprll |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> w e. Word Y ) |
| 56 |
|
eqeq1 |
|- ( ( # ` x ) = ( m + 1 ) -> ( ( # ` x ) = ( # ` w ) <-> ( m + 1 ) = ( # ` w ) ) ) |
| 57 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
| 58 |
|
eleq1 |
|- ( ( # ` w ) = ( m + 1 ) -> ( ( # ` w ) e. NN <-> ( m + 1 ) e. NN ) ) |
| 59 |
58
|
eqcoms |
|- ( ( m + 1 ) = ( # ` w ) -> ( ( # ` w ) e. NN <-> ( m + 1 ) e. NN ) ) |
| 60 |
57 59
|
imbitrrid |
|- ( ( m + 1 ) = ( # ` w ) -> ( m e. NN0 -> ( # ` w ) e. NN ) ) |
| 61 |
56 60
|
biimtrdi |
|- ( ( # ` x ) = ( m + 1 ) -> ( ( # ` x ) = ( # ` w ) -> ( m e. NN0 -> ( # ` w ) e. NN ) ) ) |
| 62 |
61
|
impcom |
|- ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ( m e. NN0 -> ( # ` w ) e. NN ) ) |
| 63 |
62
|
adantl |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) -> ( m e. NN0 -> ( # ` w ) e. NN ) ) |
| 64 |
63
|
impcom |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` w ) e. NN ) |
| 65 |
64
|
nnge1d |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> 1 <_ ( # ` w ) ) |
| 66 |
|
wrdlenge1n0 |
|- ( w e. Word Y -> ( w =/= (/) <-> 1 <_ ( # ` w ) ) ) |
| 67 |
55 66
|
syl |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( w =/= (/) <-> 1 <_ ( # ` w ) ) ) |
| 68 |
65 67
|
mpbird |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> w =/= (/) ) |
| 69 |
|
lswcl |
|- ( ( w e. Word Y /\ w =/= (/) ) -> ( lastS ` w ) e. Y ) |
| 70 |
55 68 69
|
syl2anc |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( lastS ` w ) e. Y ) |
| 71 |
54 70
|
jca |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y /\ ( lastS ` w ) e. Y ) ) |
| 72 |
|
pfxcl |
|- ( x e. Word X -> ( x prefix ( ( # ` x ) - 1 ) ) e. Word X ) |
| 73 |
72
|
adantl |
|- ( ( w e. Word Y /\ x e. Word X ) -> ( x prefix ( ( # ` x ) - 1 ) ) e. Word X ) |
| 74 |
73
|
ad2antrl |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( x prefix ( ( # ` x ) - 1 ) ) e. Word X ) |
| 75 |
|
simprlr |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> x e. Word X ) |
| 76 |
|
eleq1 |
|- ( ( # ` x ) = ( m + 1 ) -> ( ( # ` x ) e. NN <-> ( m + 1 ) e. NN ) ) |
| 77 |
57 76
|
imbitrrid |
|- ( ( # ` x ) = ( m + 1 ) -> ( m e. NN0 -> ( # ` x ) e. NN ) ) |
| 78 |
77
|
ad2antll |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) -> ( m e. NN0 -> ( # ` x ) e. NN ) ) |
| 79 |
78
|
impcom |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` x ) e. NN ) |
| 80 |
79
|
nnge1d |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> 1 <_ ( # ` x ) ) |
| 81 |
|
wrdlenge1n0 |
|- ( x e. Word X -> ( x =/= (/) <-> 1 <_ ( # ` x ) ) ) |
| 82 |
75 81
|
syl |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( x =/= (/) <-> 1 <_ ( # ` x ) ) ) |
| 83 |
80 82
|
mpbird |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> x =/= (/) ) |
| 84 |
|
lswcl |
|- ( ( x e. Word X /\ x =/= (/) ) -> ( lastS ` x ) e. X ) |
| 85 |
75 83 84
|
syl2anc |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( lastS ` x ) e. X ) |
| 86 |
71 74 85
|
jca32 |
|- ( ( m e. NN0 /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y /\ ( lastS ` w ) e. Y ) /\ ( ( x prefix ( ( # ` x ) - 1 ) ) e. Word X /\ ( lastS ` x ) e. X ) ) ) |
| 87 |
86
|
adantlr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y /\ ( lastS ` w ) e. Y ) /\ ( ( x prefix ( ( # ` x ) - 1 ) ) e. Word X /\ ( lastS ` x ) e. X ) ) ) |
| 88 |
|
simprl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( w e. Word Y /\ x e. Word X ) ) |
| 89 |
|
simplr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) |
| 90 |
|
simprrl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` x ) = ( # ` w ) ) |
| 91 |
90
|
oveq1d |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` x ) - 1 ) = ( ( # ` w ) - 1 ) ) |
| 92 |
|
simprlr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> x e. Word X ) |
| 93 |
|
fzossfz |
|- ( 0 ..^ ( # ` x ) ) C_ ( 0 ... ( # ` x ) ) |
| 94 |
|
simprrr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` x ) = ( m + 1 ) ) |
| 95 |
57
|
ad2antrr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( m + 1 ) e. NN ) |
| 96 |
94 95
|
eqeltrd |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` x ) e. NN ) |
| 97 |
|
fzo0end |
|- ( ( # ` x ) e. NN -> ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 98 |
96 97
|
syl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 99 |
93 98
|
sselid |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) |
| 100 |
|
pfxlen |
|- ( ( x e. Word X /\ ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( ( # ` x ) - 1 ) ) |
| 101 |
92 99 100
|
syl2anc |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( ( # ` x ) - 1 ) ) |
| 102 |
|
simprll |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> w e. Word Y ) |
| 103 |
|
oveq1 |
|- ( ( # ` w ) = ( # ` x ) -> ( ( # ` w ) - 1 ) = ( ( # ` x ) - 1 ) ) |
| 104 |
|
oveq2 |
|- ( ( # ` w ) = ( # ` x ) -> ( 0 ... ( # ` w ) ) = ( 0 ... ( # ` x ) ) ) |
| 105 |
103 104
|
eleq12d |
|- ( ( # ` w ) = ( # ` x ) -> ( ( ( # ` w ) - 1 ) e. ( 0 ... ( # ` w ) ) <-> ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) ) |
| 106 |
105
|
eqcoms |
|- ( ( # ` x ) = ( # ` w ) -> ( ( ( # ` w ) - 1 ) e. ( 0 ... ( # ` w ) ) <-> ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) ) |
| 107 |
106
|
adantr |
|- ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ( ( ( # ` w ) - 1 ) e. ( 0 ... ( # ` w ) ) <-> ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) ) |
| 108 |
107
|
ad2antll |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( ( # ` w ) - 1 ) e. ( 0 ... ( # ` w ) ) <-> ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) ) |
| 109 |
99 108
|
mpbird |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` w ) - 1 ) e. ( 0 ... ( # ` w ) ) ) |
| 110 |
|
pfxlen |
|- ( ( w e. Word Y /\ ( ( # ` w ) - 1 ) e. ( 0 ... ( # ` w ) ) ) -> ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) = ( ( # ` w ) - 1 ) ) |
| 111 |
102 109 110
|
syl2anc |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) = ( ( # ` w ) - 1 ) ) |
| 112 |
91 101 111
|
3eqtr4d |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) |
| 113 |
94
|
oveq1d |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` x ) - 1 ) = ( ( m + 1 ) - 1 ) ) |
| 114 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 115 |
114
|
ad2antrr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> m e. CC ) |
| 116 |
|
ax-1cn |
|- 1 e. CC |
| 117 |
|
pncan |
|- ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) |
| 118 |
115 116 117
|
sylancl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( m + 1 ) - 1 ) = m ) |
| 119 |
101 113 118
|
3eqtrd |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) |
| 120 |
112 119
|
jca |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) ) |
| 121 |
73
|
adantr |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) -> ( x prefix ( ( # ` x ) - 1 ) ) e. Word X ) |
| 122 |
|
fveq2 |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( # ` y ) = ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) ) |
| 123 |
|
fveq2 |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( # ` u ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) |
| 124 |
122 123
|
eqeqan12d |
|- ( ( y = ( x prefix ( ( # ` x ) - 1 ) ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) -> ( ( # ` y ) = ( # ` u ) <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) |
| 125 |
124
|
expcom |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( # ` y ) = ( # ` u ) <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) ) |
| 126 |
125
|
adantl |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) -> ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( # ` y ) = ( # ` u ) <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) ) |
| 127 |
126
|
imp |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( ( # ` y ) = ( # ` u ) <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) |
| 128 |
|
fveqeq2 |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( # ` y ) = m <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) ) |
| 129 |
128
|
adantl |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( ( # ` y ) = m <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) ) |
| 130 |
127 129
|
anbi12d |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) <-> ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) ) ) |
| 131 |
|
vex |
|- y e. _V |
| 132 |
|
vex |
|- u e. _V |
| 133 |
131 132 2
|
sbc2ie |
|- ( [. y / x ]. [. u / w ]. ph <-> ch ) |
| 134 |
133
|
bicomi |
|- ( ch <-> [. y / x ]. [. u / w ]. ph ) |
| 135 |
134
|
a1i |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( ch <-> [. y / x ]. [. u / w ]. ph ) ) |
| 136 |
|
simpr |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> y = ( x prefix ( ( # ` x ) - 1 ) ) ) |
| 137 |
136
|
sbceq1d |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( [. y / x ]. [. u / w ]. ph <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. u / w ]. ph ) ) |
| 138 |
|
dfsbcq |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( [. u / w ]. ph <-> [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 139 |
138
|
sbcbidv |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. u / w ]. ph <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 140 |
139
|
adantl |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) -> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. u / w ]. ph <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 141 |
140
|
adantr |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. u / w ]. ph <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 142 |
135 137 141
|
3bitrd |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( ch <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 143 |
130 142
|
imbi12d |
|- ( ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) /\ y = ( x prefix ( ( # ` x ) - 1 ) ) ) -> ( ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) <-> ( ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) ) |
| 144 |
121 143
|
rspcdv |
|- ( ( ( w e. Word Y /\ x e. Word X ) /\ u = ( w prefix ( ( # ` w ) - 1 ) ) ) -> ( A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) -> ( ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) ) |
| 145 |
53 144
|
rspcimdv |
|- ( ( w e. Word Y /\ x e. Word X ) -> ( A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) -> ( ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) ) |
| 146 |
88 89 120 145
|
syl3c |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) |
| 147 |
146 112
|
jca |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) |
| 148 |
|
dfsbcq |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( [. u / w ]. [. y / x ]. ph <-> [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. [. y / x ]. ph ) ) |
| 149 |
|
sbccom |
|- ( [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. [. y / x ]. ph <-> [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) |
| 150 |
148 149
|
bitrdi |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( [. u / w ]. [. y / x ]. ph <-> [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 151 |
123
|
eqeq2d |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( ( # ` y ) = ( # ` u ) <-> ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) |
| 152 |
150 151
|
anbi12d |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( ( [. u / w ]. [. y / x ]. ph /\ ( # ` y ) = ( # ` u ) ) <-> ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) ) |
| 153 |
|
oveq1 |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( u ++ <" s "> ) = ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) ) |
| 154 |
153
|
sbceq1d |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( [. ( u ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph <-> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) |
| 155 |
152 154
|
imbi12d |
|- ( u = ( w prefix ( ( # ` w ) - 1 ) ) -> ( ( ( [. u / w ]. [. y / x ]. ph /\ ( # ` y ) = ( # ` u ) ) -> [. ( u ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) <-> ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) ) |
| 156 |
|
s1eq |
|- ( s = ( lastS ` w ) -> <" s "> = <" ( lastS ` w ) "> ) |
| 157 |
156
|
oveq2d |
|- ( s = ( lastS ` w ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) = ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
| 158 |
157
|
sbceq1d |
|- ( s = ( lastS ` w ) -> ( [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph <-> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) |
| 159 |
158
|
imbi2d |
|- ( s = ( lastS ` w ) -> ( ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) <-> ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) ) |
| 160 |
|
sbccom |
|- ( [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph <-> [. ( y ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) |
| 161 |
160
|
a1i |
|- ( s = ( lastS ` w ) -> ( [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph <-> [. ( y ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 162 |
161
|
imbi2d |
|- ( s = ( lastS ` w ) -> ( ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) <-> ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( y ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) ) |
| 163 |
159 162
|
bitrd |
|- ( s = ( lastS ` w ) -> ( ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) <-> ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( y ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) ) |
| 164 |
|
dfsbcq |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph ) ) |
| 165 |
|
fveqeq2 |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) |
| 166 |
164 165
|
anbi12d |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) <-> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) ) ) |
| 167 |
|
oveq1 |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( y ++ <" z "> ) = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) ) |
| 168 |
167
|
sbceq1d |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( [. ( y ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 169 |
166 168
|
imbi12d |
|- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( ( [. y / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` y ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( y ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) <-> ( ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) ) |
| 170 |
|
s1eq |
|- ( z = ( lastS ` x ) -> <" z "> = <" ( lastS ` x ) "> ) |
| 171 |
170
|
oveq2d |
|- ( z = ( lastS ` x ) -> ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) |
| 172 |
171
|
sbceq1d |
|- ( z = ( lastS ` x ) -> ( [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 173 |
172
|
imbi2d |
|- ( z = ( lastS ` x ) -> ( ( ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) <-> ( ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) ) |
| 174 |
|
simplr |
|- ( ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) /\ ( # ` y ) = ( # ` u ) ) -> ( y e. Word X /\ z e. X ) ) |
| 175 |
|
simpll |
|- ( ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) /\ ( # ` y ) = ( # ` u ) ) -> ( u e. Word Y /\ s e. Y ) ) |
| 176 |
|
simpr |
|- ( ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) /\ ( # ` y ) = ( # ` u ) ) -> ( # ` y ) = ( # ` u ) ) |
| 177 |
174 175 176 7
|
syl3anc |
|- ( ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) /\ ( # ` y ) = ( # ` u ) ) -> ( ch -> th ) ) |
| 178 |
2
|
ancoms |
|- ( ( w = u /\ x = y ) -> ( ph <-> ch ) ) |
| 179 |
132 131 178
|
sbc2ie |
|- ( [. u / w ]. [. y / x ]. ph <-> ch ) |
| 180 |
|
ovex |
|- ( u ++ <" s "> ) e. _V |
| 181 |
|
ovex |
|- ( y ++ <" z "> ) e. _V |
| 182 |
3
|
ancoms |
|- ( ( w = ( u ++ <" s "> ) /\ x = ( y ++ <" z "> ) ) -> ( ph <-> th ) ) |
| 183 |
180 181 182
|
sbc2ie |
|- ( [. ( u ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph <-> th ) |
| 184 |
177 179 183
|
3imtr4g |
|- ( ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) /\ ( # ` y ) = ( # ` u ) ) -> ( [. u / w ]. [. y / x ]. ph -> [. ( u ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) |
| 185 |
184
|
ex |
|- ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) -> ( ( # ` y ) = ( # ` u ) -> ( [. u / w ]. [. y / x ]. ph -> [. ( u ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) ) |
| 186 |
185
|
impcomd |
|- ( ( ( u e. Word Y /\ s e. Y ) /\ ( y e. Word X /\ z e. X ) ) -> ( ( [. u / w ]. [. y / x ]. ph /\ ( # ` y ) = ( # ` u ) ) -> [. ( u ++ <" s "> ) / w ]. [. ( y ++ <" z "> ) / x ]. ph ) ) |
| 187 |
155 163 169 173 186
|
vtocl4ga |
|- ( ( ( ( w prefix ( ( # ` w ) - 1 ) ) e. Word Y /\ ( lastS ` w ) e. Y ) /\ ( ( x prefix ( ( # ` x ) - 1 ) ) e. Word X /\ ( lastS ` x ) e. X ) ) -> ( ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. [. ( w prefix ( ( # ` w ) - 1 ) ) / w ]. ph /\ ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( # ` ( w prefix ( ( # ` w ) - 1 ) ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 188 |
87 147 187
|
sylc |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) |
| 189 |
|
eqtr2 |
|- ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ( # ` w ) = ( m + 1 ) ) |
| 190 |
189
|
ad2antll |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` w ) = ( m + 1 ) ) |
| 191 |
190 95
|
eqeltrd |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( # ` w ) e. NN ) |
| 192 |
|
wrdfin |
|- ( w e. Word Y -> w e. Fin ) |
| 193 |
192
|
adantr |
|- ( ( w e. Word Y /\ x e. Word X ) -> w e. Fin ) |
| 194 |
193
|
ad2antrl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> w e. Fin ) |
| 195 |
|
hashnncl |
|- ( w e. Fin -> ( ( # ` w ) e. NN <-> w =/= (/) ) ) |
| 196 |
194 195
|
syl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` w ) e. NN <-> w =/= (/) ) ) |
| 197 |
191 196
|
mpbid |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> w =/= (/) ) |
| 198 |
|
pfxlswccat |
|- ( ( w e. Word Y /\ w =/= (/) ) -> ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) = w ) |
| 199 |
198
|
eqcomd |
|- ( ( w e. Word Y /\ w =/= (/) ) -> w = ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
| 200 |
102 197 199
|
syl2anc |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> w = ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) ) |
| 201 |
|
wrdfin |
|- ( x e. Word X -> x e. Fin ) |
| 202 |
201
|
adantl |
|- ( ( w e. Word Y /\ x e. Word X ) -> x e. Fin ) |
| 203 |
202
|
ad2antrl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> x e. Fin ) |
| 204 |
|
hashnncl |
|- ( x e. Fin -> ( ( # ` x ) e. NN <-> x =/= (/) ) ) |
| 205 |
203 204
|
syl |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ( # ` x ) e. NN <-> x =/= (/) ) ) |
| 206 |
96 205
|
mpbid |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> x =/= (/) ) |
| 207 |
|
pfxlswccat |
|- ( ( x e. Word X /\ x =/= (/) ) -> ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) = x ) |
| 208 |
207
|
eqcomd |
|- ( ( x e. Word X /\ x =/= (/) ) -> x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) |
| 209 |
92 206 208
|
syl2anc |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) |
| 210 |
|
sbceq1a |
|- ( w = ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) -> ( ph <-> [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 211 |
|
sbceq1a |
|- ( x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) -> ( [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 212 |
210 211
|
sylan9bb |
|- ( ( w = ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) /\ x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) -> ( ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 213 |
200 209 212
|
syl2anc |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ( ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. [. ( ( w prefix ( ( # ` w ) - 1 ) ) ++ <" ( lastS ` w ) "> ) / w ]. ph ) ) |
| 214 |
188 213
|
mpbird |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( ( w e. Word Y /\ x e. Word X ) /\ ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) ) ) -> ph ) |
| 215 |
214
|
expr |
|- ( ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) /\ ( w e. Word Y /\ x e. Word X ) ) -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ph ) ) |
| 216 |
215
|
ralrimivva |
|- ( ( m e. NN0 /\ A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) ) -> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ph ) ) |
| 217 |
216
|
ex |
|- ( m e. NN0 -> ( A. u e. Word Y A. y e. Word X ( ( ( # ` y ) = ( # ` u ) /\ ( # ` y ) = m ) -> ch ) -> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ph ) ) ) |
| 218 |
51 217
|
biimtrid |
|- ( m e. NN0 -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = m ) -> ph ) -> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( m + 1 ) ) -> ph ) ) ) |
| 219 |
12 16 20 24 41 218
|
nn0ind |
|- ( ( # ` A ) e. NN0 -> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) ) |
| 220 |
8 219
|
syl |
|- ( A e. Word X -> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) ) |
| 221 |
220
|
3ad2ant1 |
|- ( ( A e. Word X /\ B e. Word Y /\ ( # ` A ) = ( # ` B ) ) -> A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) ) |
| 222 |
|
fveq2 |
|- ( w = B -> ( # ` w ) = ( # ` B ) ) |
| 223 |
222
|
eqeq2d |
|- ( w = B -> ( ( # ` x ) = ( # ` w ) <-> ( # ` x ) = ( # ` B ) ) ) |
| 224 |
223
|
anbi1d |
|- ( w = B -> ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) <-> ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) ) ) |
| 225 |
224 5
|
imbi12d |
|- ( w = B -> ( ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) <-> ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) ) ) |
| 226 |
225
|
ralbidv |
|- ( w = B -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) <-> A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) ) ) |
| 227 |
226
|
rspcv |
|- ( B e. Word Y -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) -> A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) ) ) |
| 228 |
227
|
3ad2ant2 |
|- ( ( A e. Word X /\ B e. Word Y /\ ( # ` A ) = ( # ` B ) ) -> ( A. w e. Word Y A. x e. Word X ( ( ( # ` x ) = ( # ` w ) /\ ( # ` x ) = ( # ` A ) ) -> ph ) -> A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) ) ) |
| 229 |
221 228
|
mpd |
|- ( ( A e. Word X /\ B e. Word Y /\ ( # ` A ) = ( # ` B ) ) -> A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) ) |
| 230 |
|
eqidd |
|- ( ( A e. Word X /\ B e. Word Y /\ ( # ` A ) = ( # ` B ) ) -> ( # ` A ) = ( # ` A ) ) |
| 231 |
|
fveqeq2 |
|- ( x = A -> ( ( # ` x ) = ( # ` B ) <-> ( # ` A ) = ( # ` B ) ) ) |
| 232 |
|
fveqeq2 |
|- ( x = A -> ( ( # ` x ) = ( # ` A ) <-> ( # ` A ) = ( # ` A ) ) ) |
| 233 |
231 232
|
anbi12d |
|- ( x = A -> ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) <-> ( ( # ` A ) = ( # ` B ) /\ ( # ` A ) = ( # ` A ) ) ) ) |
| 234 |
233 4
|
imbi12d |
|- ( x = A -> ( ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) <-> ( ( ( # ` A ) = ( # ` B ) /\ ( # ` A ) = ( # ` A ) ) -> ta ) ) ) |
| 235 |
234
|
rspcv |
|- ( A e. Word X -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) -> ( ( ( # ` A ) = ( # ` B ) /\ ( # ` A ) = ( # ` A ) ) -> ta ) ) ) |
| 236 |
235
|
com23 |
|- ( A e. Word X -> ( ( ( # ` A ) = ( # ` B ) /\ ( # ` A ) = ( # ` A ) ) -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) -> ta ) ) ) |
| 237 |
236
|
expd |
|- ( A e. Word X -> ( ( # ` A ) = ( # ` B ) -> ( ( # ` A ) = ( # ` A ) -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) -> ta ) ) ) ) |
| 238 |
237
|
com34 |
|- ( A e. Word X -> ( ( # ` A ) = ( # ` B ) -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) -> ( ( # ` A ) = ( # ` A ) -> ta ) ) ) ) |
| 239 |
238
|
imp |
|- ( ( A e. Word X /\ ( # ` A ) = ( # ` B ) ) -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) -> ( ( # ` A ) = ( # ` A ) -> ta ) ) ) |
| 240 |
239
|
3adant2 |
|- ( ( A e. Word X /\ B e. Word Y /\ ( # ` A ) = ( # ` B ) ) -> ( A. x e. Word X ( ( ( # ` x ) = ( # ` B ) /\ ( # ` x ) = ( # ` A ) ) -> rh ) -> ( ( # ` A ) = ( # ` A ) -> ta ) ) ) |
| 241 |
229 230 240
|
mp2d |
|- ( ( A e. Word X /\ B e. Word Y /\ ( # ` A ) = ( # ` B ) ) -> ta ) |