Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016) (Proof shortened by JJ, 18-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdexg | |- ( S e. V -> Word S e. _V )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wrdval | |- ( S e. V -> Word S = U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) )  | 
						|
| 2 | nn0ex | |- NN0 e. _V  | 
						|
| 3 | ovexd | |- ( ( S e. V /\ l e. NN0 ) -> ( S ^m ( 0 ..^ l ) ) e. _V )  | 
						|
| 4 | 3 | ralrimiva | |- ( S e. V -> A. l e. NN0 ( S ^m ( 0 ..^ l ) ) e. _V )  | 
						
| 5 | iunexg | |- ( ( NN0 e. _V /\ A. l e. NN0 ( S ^m ( 0 ..^ l ) ) e. _V ) -> U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) e. _V )  | 
						|
| 6 | 2 4 5 | sylancr | |- ( S e. V -> U_ l e. NN0 ( S ^m ( 0 ..^ l ) ) e. _V )  | 
						
| 7 | 1 6 | eqeltrd | |- ( S e. V -> Word S e. _V )  |