Metamath Proof Explorer


Theorem wrdffz

Description: A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021)

Ref Expression
Assertion wrdffz
|- ( W e. Word S -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> S )

Proof

Step Hyp Ref Expression
1 wrdf
 |-  ( W e. Word S -> W : ( 0 ..^ ( # ` W ) ) --> S )
2 lencl
 |-  ( W e. Word S -> ( # ` W ) e. NN0 )
3 2 nn0zd
 |-  ( W e. Word S -> ( # ` W ) e. ZZ )
4 fzoval
 |-  ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) )
5 3 4 syl
 |-  ( W e. Word S -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) )
6 5 feq2d
 |-  ( W e. Word S -> ( W : ( 0 ..^ ( # ` W ) ) --> S <-> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> S ) )
7 1 6 mpbid
 |-  ( W e. Word S -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> S )