| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 2 |  | breq2 |  |-  ( ( # ` W ) = 1 -> ( 1 <_ ( # ` W ) <-> 1 <_ 1 ) ) | 
						
							| 3 | 1 2 | mpbiri |  |-  ( ( # ` W ) = 1 -> 1 <_ ( # ` W ) ) | 
						
							| 4 |  | wrdsymb1 |  |-  ( ( W e. Word S /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. S ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( W e. Word S /\ ( # ` W ) = 1 ) -> ( W ` 0 ) e. S ) | 
						
							| 6 |  | s1eq |  |-  ( s = ( W ` 0 ) -> <" s "> = <" ( W ` 0 ) "> ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( W e. Word S /\ ( # ` W ) = 1 ) /\ s = ( W ` 0 ) ) -> <" s "> = <" ( W ` 0 ) "> ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( ( ( W e. Word S /\ ( # ` W ) = 1 ) /\ s = ( W ` 0 ) ) -> ( W = <" s "> <-> W = <" ( W ` 0 ) "> ) ) | 
						
							| 9 |  | eqs1 |  |-  ( ( W e. Word S /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) | 
						
							| 10 | 5 8 9 | rspcedvd |  |-  ( ( W e. Word S /\ ( # ` W ) = 1 ) -> E. s e. S W = <" s "> ) |