| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s1cl |  |-  ( S e. V -> <" S "> e. Word V ) | 
						
							| 2 |  | s1len |  |-  ( # ` <" S "> ) = 1 | 
						
							| 3 | 2 | a1i |  |-  ( S e. V -> ( # ` <" S "> ) = 1 ) | 
						
							| 4 |  | s1fv |  |-  ( S e. V -> ( <" S "> ` 0 ) = S ) | 
						
							| 5 | 1 3 4 | 3jca |  |-  ( S e. V -> ( <" S "> e. Word V /\ ( # ` <" S "> ) = 1 /\ ( <" S "> ` 0 ) = S ) ) | 
						
							| 6 |  | eleq1 |  |-  ( W = <" S "> -> ( W e. Word V <-> <" S "> e. Word V ) ) | 
						
							| 7 |  | fveqeq2 |  |-  ( W = <" S "> -> ( ( # ` W ) = 1 <-> ( # ` <" S "> ) = 1 ) ) | 
						
							| 8 |  | fveq1 |  |-  ( W = <" S "> -> ( W ` 0 ) = ( <" S "> ` 0 ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( W = <" S "> -> ( ( W ` 0 ) = S <-> ( <" S "> ` 0 ) = S ) ) | 
						
							| 10 | 6 7 9 | 3anbi123d |  |-  ( W = <" S "> -> ( ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) <-> ( <" S "> e. Word V /\ ( # ` <" S "> ) = 1 /\ ( <" S "> ` 0 ) = S ) ) ) | 
						
							| 11 | 5 10 | syl5ibrcom |  |-  ( S e. V -> ( W = <" S "> -> ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) ) ) | 
						
							| 12 |  | eqs1 |  |-  ( ( W e. Word V /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) | 
						
							| 13 |  | s1eq |  |-  ( ( W ` 0 ) = S -> <" ( W ` 0 ) "> = <" S "> ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( ( W ` 0 ) = S -> ( W = <" ( W ` 0 ) "> <-> W = <" S "> ) ) | 
						
							| 15 | 12 14 | syl5ibcom |  |-  ( ( W e. Word V /\ ( # ` W ) = 1 ) -> ( ( W ` 0 ) = S -> W = <" S "> ) ) | 
						
							| 16 | 15 | 3impia |  |-  ( ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) -> W = <" S "> ) | 
						
							| 17 | 11 16 | impbid1 |  |-  ( S e. V -> ( W = <" S "> <-> ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) ) ) |