Step |
Hyp |
Ref |
Expression |
1 |
|
s1cl |
|- ( S e. V -> <" S "> e. Word V ) |
2 |
|
s1len |
|- ( # ` <" S "> ) = 1 |
3 |
2
|
a1i |
|- ( S e. V -> ( # ` <" S "> ) = 1 ) |
4 |
|
s1fv |
|- ( S e. V -> ( <" S "> ` 0 ) = S ) |
5 |
1 3 4
|
3jca |
|- ( S e. V -> ( <" S "> e. Word V /\ ( # ` <" S "> ) = 1 /\ ( <" S "> ` 0 ) = S ) ) |
6 |
|
eleq1 |
|- ( W = <" S "> -> ( W e. Word V <-> <" S "> e. Word V ) ) |
7 |
|
fveqeq2 |
|- ( W = <" S "> -> ( ( # ` W ) = 1 <-> ( # ` <" S "> ) = 1 ) ) |
8 |
|
fveq1 |
|- ( W = <" S "> -> ( W ` 0 ) = ( <" S "> ` 0 ) ) |
9 |
8
|
eqeq1d |
|- ( W = <" S "> -> ( ( W ` 0 ) = S <-> ( <" S "> ` 0 ) = S ) ) |
10 |
6 7 9
|
3anbi123d |
|- ( W = <" S "> -> ( ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) <-> ( <" S "> e. Word V /\ ( # ` <" S "> ) = 1 /\ ( <" S "> ` 0 ) = S ) ) ) |
11 |
5 10
|
syl5ibrcom |
|- ( S e. V -> ( W = <" S "> -> ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) ) ) |
12 |
|
eqs1 |
|- ( ( W e. Word V /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) |
13 |
|
s1eq |
|- ( ( W ` 0 ) = S -> <" ( W ` 0 ) "> = <" S "> ) |
14 |
13
|
eqeq2d |
|- ( ( W ` 0 ) = S -> ( W = <" ( W ` 0 ) "> <-> W = <" S "> ) ) |
15 |
12 14
|
syl5ibcom |
|- ( ( W e. Word V /\ ( # ` W ) = 1 ) -> ( ( W ` 0 ) = S -> W = <" S "> ) ) |
16 |
15
|
3impia |
|- ( ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) -> W = <" S "> ) |
17 |
11 16
|
impbid1 |
|- ( S e. V -> ( W = <" S "> <-> ( W e. Word V /\ ( # ` W ) = 1 /\ ( W ` 0 ) = S ) ) ) |