Step |
Hyp |
Ref |
Expression |
1 |
|
wrdlen2i |
|- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |
2 |
|
wrd2pr2op |
|- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> W = { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } ) |
3 |
|
opeq2 |
|- ( ( W ` 0 ) = S -> <. 0 , ( W ` 0 ) >. = <. 0 , S >. ) |
4 |
3
|
adantr |
|- ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) -> <. 0 , ( W ` 0 ) >. = <. 0 , S >. ) |
5 |
|
opeq2 |
|- ( ( W ` 1 ) = T -> <. 1 , ( W ` 1 ) >. = <. 1 , T >. ) |
6 |
5
|
adantl |
|- ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) -> <. 1 , ( W ` 1 ) >. = <. 1 , T >. ) |
7 |
4 6
|
preq12d |
|- ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) -> { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } = { <. 0 , S >. , <. 1 , T >. } ) |
8 |
2 7
|
sylan9eq |
|- ( ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) -> W = { <. 0 , S >. , <. 1 , T >. } ) |
9 |
1 8
|
impbid1 |
|- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } <-> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |