Step |
Hyp |
Ref |
Expression |
1 |
|
c0ex |
|- 0 e. _V |
2 |
|
1ex |
|- 1 e. _V |
3 |
1 2
|
pm3.2i |
|- ( 0 e. _V /\ 1 e. _V ) |
4 |
|
simpl |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( S e. V /\ T e. V ) ) |
5 |
|
0ne1 |
|- 0 =/= 1 |
6 |
5
|
a1i |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> 0 =/= 1 ) |
7 |
|
fprg |
|- ( ( ( 0 e. _V /\ 1 e. _V ) /\ ( S e. V /\ T e. V ) /\ 0 =/= 1 ) -> { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) |
8 |
3 4 6 7
|
mp3an2i |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) |
9 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
10 |
9
|
eqcomi |
|- { 0 , 1 } = ( 0 ..^ 2 ) |
11 |
10
|
a1i |
|- ( ( S e. V /\ T e. V ) -> { 0 , 1 } = ( 0 ..^ 2 ) ) |
12 |
11
|
feq2d |
|- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> { S , T } ) ) |
13 |
12
|
biimpa |
|- ( ( ( S e. V /\ T e. V ) /\ { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> { S , T } ) |
14 |
|
prssi |
|- ( ( S e. V /\ T e. V ) -> { S , T } C_ V ) |
15 |
14
|
adantr |
|- ( ( ( S e. V /\ T e. V ) /\ { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) -> { S , T } C_ V ) |
16 |
13 15
|
fssd |
|- ( ( ( S e. V /\ T e. V ) /\ { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } ) -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) |
17 |
16
|
ex |
|- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
18 |
17
|
adantr |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
19 |
18
|
impcom |
|- ( ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } /\ ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) ) -> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) |
20 |
|
feq1 |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( W : ( 0 ..^ 2 ) --> V <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
21 |
20
|
adantl |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( W : ( 0 ..^ 2 ) --> V <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
22 |
21
|
adantl |
|- ( ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } /\ ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) ) -> ( W : ( 0 ..^ 2 ) --> V <-> { <. 0 , S >. , <. 1 , T >. } : ( 0 ..^ 2 ) --> V ) ) |
23 |
19 22
|
mpbird |
|- ( ( { <. 0 , S >. , <. 1 , T >. } : { 0 , 1 } --> { S , T } /\ ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) ) -> W : ( 0 ..^ 2 ) --> V ) |
24 |
8 23
|
mpancom |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> W : ( 0 ..^ 2 ) --> V ) |
25 |
|
iswrdi |
|- ( W : ( 0 ..^ 2 ) --> V -> W e. Word V ) |
26 |
24 25
|
syl |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> W e. Word V ) |
27 |
|
fveq2 |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( # ` W ) = ( # ` { <. 0 , S >. , <. 1 , T >. } ) ) |
28 |
5
|
neii |
|- -. 0 = 1 |
29 |
|
simpl |
|- ( ( S e. V /\ T e. V ) -> S e. V ) |
30 |
|
opth1g |
|- ( ( 0 e. _V /\ S e. V ) -> ( <. 0 , S >. = <. 1 , T >. -> 0 = 1 ) ) |
31 |
1 29 30
|
sylancr |
|- ( ( S e. V /\ T e. V ) -> ( <. 0 , S >. = <. 1 , T >. -> 0 = 1 ) ) |
32 |
28 31
|
mtoi |
|- ( ( S e. V /\ T e. V ) -> -. <. 0 , S >. = <. 1 , T >. ) |
33 |
32
|
neqned |
|- ( ( S e. V /\ T e. V ) -> <. 0 , S >. =/= <. 1 , T >. ) |
34 |
|
opex |
|- <. 0 , S >. e. _V |
35 |
|
opex |
|- <. 1 , T >. e. _V |
36 |
34 35
|
pm3.2i |
|- ( <. 0 , S >. e. _V /\ <. 1 , T >. e. _V ) |
37 |
|
hashprg |
|- ( ( <. 0 , S >. e. _V /\ <. 1 , T >. e. _V ) -> ( <. 0 , S >. =/= <. 1 , T >. <-> ( # ` { <. 0 , S >. , <. 1 , T >. } ) = 2 ) ) |
38 |
36 37
|
mp1i |
|- ( ( S e. V /\ T e. V ) -> ( <. 0 , S >. =/= <. 1 , T >. <-> ( # ` { <. 0 , S >. , <. 1 , T >. } ) = 2 ) ) |
39 |
33 38
|
mpbid |
|- ( ( S e. V /\ T e. V ) -> ( # ` { <. 0 , S >. , <. 1 , T >. } ) = 2 ) |
40 |
27 39
|
sylan9eqr |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( # ` W ) = 2 ) |
41 |
5
|
a1i |
|- ( ( S e. V /\ T e. V ) -> 0 =/= 1 ) |
42 |
|
fvpr1g |
|- ( ( 0 e. _V /\ S e. V /\ 0 =/= 1 ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S ) |
43 |
1 29 41 42
|
mp3an2i |
|- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S ) |
44 |
|
simpr |
|- ( ( S e. V /\ T e. V ) -> T e. V ) |
45 |
|
fvpr2g |
|- ( ( 1 e. _V /\ T e. V /\ 0 =/= 1 ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) |
46 |
2 44 41 45
|
mp3an2i |
|- ( ( S e. V /\ T e. V ) -> ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) |
47 |
43 46
|
jca |
|- ( ( S e. V /\ T e. V ) -> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) |
48 |
47
|
adantr |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) |
49 |
|
fveq1 |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( W ` 0 ) = ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) ) |
50 |
49
|
eqeq1d |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W ` 0 ) = S <-> ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S ) ) |
51 |
|
fveq1 |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( W ` 1 ) = ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) ) |
52 |
51
|
eqeq1d |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W ` 1 ) = T <-> ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) |
53 |
50 52
|
anbi12d |
|- ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) <-> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) ) |
54 |
53
|
adantl |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) <-> ( ( { <. 0 , S >. , <. 1 , T >. } ` 0 ) = S /\ ( { <. 0 , S >. , <. 1 , T >. } ` 1 ) = T ) ) ) |
55 |
48 54
|
mpbird |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) |
56 |
26 40 55
|
jca31 |
|- ( ( ( S e. V /\ T e. V ) /\ W = { <. 0 , S >. , <. 1 , T >. } ) -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) |
57 |
56
|
ex |
|- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |