| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red |  |-  ( W e. Word V -> 1 e. RR ) | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( W e. Word V -> 2 e. RR ) | 
						
							| 4 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 5 | 4 | nn0red |  |-  ( W e. Word V -> ( # ` W ) e. RR ) | 
						
							| 6 | 1 3 5 | 3jca |  |-  ( W e. Word V -> ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) ) | 
						
							| 8 |  | simpr |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 2 <_ ( # ` W ) ) | 
						
							| 9 |  | 1lt2 |  |-  1 < 2 | 
						
							| 10 | 8 9 | jctil |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( 1 < 2 /\ 2 <_ ( # ` W ) ) ) | 
						
							| 11 |  | ltleletr |  |-  ( ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) -> ( ( 1 < 2 /\ 2 <_ ( # ` W ) ) -> 1 <_ ( # ` W ) ) ) | 
						
							| 12 | 7 10 11 | sylc |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 1 <_ ( # ` W ) ) | 
						
							| 13 |  | wrdlenge1n0 |  |-  ( W e. Word V -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> W =/= (/) ) |