Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( W e. Word V -> 1 e. RR ) |
2 |
|
2re |
|- 2 e. RR |
3 |
2
|
a1i |
|- ( W e. Word V -> 2 e. RR ) |
4 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
5 |
4
|
nn0red |
|- ( W e. Word V -> ( # ` W ) e. RR ) |
6 |
1 3 5
|
3jca |
|- ( W e. Word V -> ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) ) |
7 |
6
|
adantr |
|- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) ) |
8 |
|
simpr |
|- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 2 <_ ( # ` W ) ) |
9 |
|
1lt2 |
|- 1 < 2 |
10 |
8 9
|
jctil |
|- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( 1 < 2 /\ 2 <_ ( # ` W ) ) ) |
11 |
|
ltleletr |
|- ( ( 1 e. RR /\ 2 e. RR /\ ( # ` W ) e. RR ) -> ( ( 1 < 2 /\ 2 <_ ( # ` W ) ) -> 1 <_ ( # ` W ) ) ) |
12 |
7 10 11
|
sylc |
|- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 1 <_ ( # ` W ) ) |
13 |
|
wrdlenge1n0 |
|- ( W e. Word V -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) ) |
14 |
13
|
adantr |
|- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) ) |
15 |
12 14
|
mpbird |
|- ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> W =/= (/) ) |