Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
|- ( w = W -> ( ( # ` w ) = N <-> ( # ` W ) = N ) ) |
2 |
1
|
elrab |
|- ( W e. { w e. Word V | ( # ` w ) = N } <-> ( W e. Word V /\ ( # ` W ) = N ) ) |
3 |
|
wrdnval |
|- ( ( V e. X /\ N e. NN0 ) -> { w e. Word V | ( # ` w ) = N } = ( V ^m ( 0 ..^ N ) ) ) |
4 |
3
|
eleq2d |
|- ( ( V e. X /\ N e. NN0 ) -> ( W e. { w e. Word V | ( # ` w ) = N } <-> W e. ( V ^m ( 0 ..^ N ) ) ) ) |
5 |
2 4
|
bitr3id |
|- ( ( V e. X /\ N e. NN0 ) -> ( ( W e. Word V /\ ( # ` W ) = N ) <-> W e. ( V ^m ( 0 ..^ N ) ) ) ) |