Metamath Proof Explorer


Theorem wrdmap

Description: Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Assertion wrdmap
|- ( ( V e. X /\ N e. NN0 ) -> ( ( W e. Word V /\ ( # ` W ) = N ) <-> W e. ( V ^m ( 0 ..^ N ) ) ) )

Proof

Step Hyp Ref Expression
1 fveqeq2
 |-  ( w = W -> ( ( # ` w ) = N <-> ( # ` W ) = N ) )
2 1 elrab
 |-  ( W e. { w e. Word V | ( # ` w ) = N } <-> ( W e. Word V /\ ( # ` W ) = N ) )
3 wrdnval
 |-  ( ( V e. X /\ N e. NN0 ) -> { w e. Word V | ( # ` w ) = N } = ( V ^m ( 0 ..^ N ) ) )
4 3 eleq2d
 |-  ( ( V e. X /\ N e. NN0 ) -> ( W e. { w e. Word V | ( # ` w ) = N } <-> W e. ( V ^m ( 0 ..^ N ) ) ) )
5 2 4 bitr3id
 |-  ( ( V e. X /\ N e. NN0 ) -> ( ( W e. Word V /\ ( # ` W ) = N ) <-> W e. ( V ^m ( 0 ..^ N ) ) ) )