| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveqeq2 |  |-  ( w = W -> ( ( # ` w ) = N <-> ( # ` W ) = N ) ) | 
						
							| 2 | 1 | elrab |  |-  ( W e. { w e. Word V | ( # ` w ) = N } <-> ( W e. Word V /\ ( # ` W ) = N ) ) | 
						
							| 3 |  | wrdnval |  |-  ( ( V e. X /\ N e. NN0 ) -> { w e. Word V | ( # ` w ) = N } = ( V ^m ( 0 ..^ N ) ) ) | 
						
							| 4 | 3 | eleq2d |  |-  ( ( V e. X /\ N e. NN0 ) -> ( W e. { w e. Word V | ( # ` w ) = N } <-> W e. ( V ^m ( 0 ..^ N ) ) ) ) | 
						
							| 5 | 2 4 | bitr3id |  |-  ( ( V e. X /\ N e. NN0 ) -> ( ( W e. Word V /\ ( # ` W ) = N ) <-> W e. ( V ^m ( 0 ..^ N ) ) ) ) |