| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab |  |-  { w e. Word V | ( # ` w ) = N } = { w | ( w e. Word V /\ ( # ` w ) = N ) } | 
						
							| 2 |  | ovexd |  |-  ( ( V e. X /\ N e. NN0 ) -> ( 0 ..^ N ) e. _V ) | 
						
							| 3 |  | elmapg |  |-  ( ( V e. X /\ ( 0 ..^ N ) e. _V ) -> ( w e. ( V ^m ( 0 ..^ N ) ) <-> w : ( 0 ..^ N ) --> V ) ) | 
						
							| 4 | 2 3 | syldan |  |-  ( ( V e. X /\ N e. NN0 ) -> ( w e. ( V ^m ( 0 ..^ N ) ) <-> w : ( 0 ..^ N ) --> V ) ) | 
						
							| 5 |  | iswrdi |  |-  ( w : ( 0 ..^ N ) --> V -> w e. Word V ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( V e. X /\ N e. NN0 ) /\ w : ( 0 ..^ N ) --> V ) -> w e. Word V ) | 
						
							| 7 |  | fnfzo0hash |  |-  ( ( N e. NN0 /\ w : ( 0 ..^ N ) --> V ) -> ( # ` w ) = N ) | 
						
							| 8 | 7 | adantll |  |-  ( ( ( V e. X /\ N e. NN0 ) /\ w : ( 0 ..^ N ) --> V ) -> ( # ` w ) = N ) | 
						
							| 9 | 6 8 | jca |  |-  ( ( ( V e. X /\ N e. NN0 ) /\ w : ( 0 ..^ N ) --> V ) -> ( w e. Word V /\ ( # ` w ) = N ) ) | 
						
							| 10 | 9 | ex |  |-  ( ( V e. X /\ N e. NN0 ) -> ( w : ( 0 ..^ N ) --> V -> ( w e. Word V /\ ( # ` w ) = N ) ) ) | 
						
							| 11 |  | wrdf |  |-  ( w e. Word V -> w : ( 0 ..^ ( # ` w ) ) --> V ) | 
						
							| 12 |  | oveq2 |  |-  ( ( # ` w ) = N -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ N ) ) | 
						
							| 13 | 12 | feq2d |  |-  ( ( # ` w ) = N -> ( w : ( 0 ..^ ( # ` w ) ) --> V <-> w : ( 0 ..^ N ) --> V ) ) | 
						
							| 14 | 11 13 | syl5ibcom |  |-  ( w e. Word V -> ( ( # ` w ) = N -> w : ( 0 ..^ N ) --> V ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( w e. Word V /\ ( # ` w ) = N ) -> w : ( 0 ..^ N ) --> V ) | 
						
							| 16 | 10 15 | impbid1 |  |-  ( ( V e. X /\ N e. NN0 ) -> ( w : ( 0 ..^ N ) --> V <-> ( w e. Word V /\ ( # ` w ) = N ) ) ) | 
						
							| 17 | 4 16 | bitrd |  |-  ( ( V e. X /\ N e. NN0 ) -> ( w e. ( V ^m ( 0 ..^ N ) ) <-> ( w e. Word V /\ ( # ` w ) = N ) ) ) | 
						
							| 18 | 17 | eqabdv |  |-  ( ( V e. X /\ N e. NN0 ) -> ( V ^m ( 0 ..^ N ) ) = { w | ( w e. Word V /\ ( # ` w ) = N ) } ) | 
						
							| 19 | 1 18 | eqtr4id |  |-  ( ( V e. X /\ N e. NN0 ) -> { w e. Word V | ( # ` w ) = N } = ( V ^m ( 0 ..^ N ) ) ) |