Step |
Hyp |
Ref |
Expression |
1 |
|
wrddm |
|- ( W e. Word V -> dom W = ( 0 ..^ ( # ` W ) ) ) |
2 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
3 |
2
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
4 |
|
simpr |
|- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> I e. ZZ ) |
5 |
|
0zd |
|- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> 0 e. ZZ ) |
6 |
|
simpl |
|- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> ( # ` W ) e. ZZ ) |
7 |
|
nelfzo |
|- ( ( I e. ZZ /\ 0 e. ZZ /\ ( # ` W ) e. ZZ ) -> ( I e/ ( 0 ..^ ( # ` W ) ) <-> ( I < 0 \/ ( # ` W ) <_ I ) ) ) |
8 |
4 5 6 7
|
syl3anc |
|- ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) -> ( I e/ ( 0 ..^ ( # ` W ) ) <-> ( I < 0 \/ ( # ` W ) <_ I ) ) ) |
9 |
8
|
biimpar |
|- ( ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) /\ ( I < 0 \/ ( # ` W ) <_ I ) ) -> I e/ ( 0 ..^ ( # ` W ) ) ) |
10 |
|
df-nel |
|- ( I e/ ( 0 ..^ ( # ` W ) ) <-> -. I e. ( 0 ..^ ( # ` W ) ) ) |
11 |
9 10
|
sylib |
|- ( ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) /\ ( I < 0 \/ ( # ` W ) <_ I ) ) -> -. I e. ( 0 ..^ ( # ` W ) ) ) |
12 |
|
eleq2 |
|- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( I e. dom W <-> I e. ( 0 ..^ ( # ` W ) ) ) ) |
13 |
12
|
notbid |
|- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( -. I e. dom W <-> -. I e. ( 0 ..^ ( # ` W ) ) ) ) |
14 |
11 13
|
syl5ibr |
|- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( ( ( ( # ` W ) e. ZZ /\ I e. ZZ ) /\ ( I < 0 \/ ( # ` W ) <_ I ) ) -> -. I e. dom W ) ) |
15 |
14
|
exp4c |
|- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) e. ZZ -> ( I e. ZZ -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> -. I e. dom W ) ) ) ) |
16 |
1 3 15
|
sylc |
|- ( W e. Word V -> ( I e. ZZ -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> -. I e. dom W ) ) ) |
17 |
16
|
imp |
|- ( ( W e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> -. I e. dom W ) ) |
18 |
|
ndmfv |
|- ( -. I e. dom W -> ( W ` I ) = (/) ) |
19 |
17 18
|
syl6 |
|- ( ( W e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` W ) <_ I ) -> ( W ` I ) = (/) ) ) |