Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
wspthnonp |
|- ( P e. ( A ( N WSPathsNOn G ) B ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( P e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) P ) ) ) |
3 |
1
|
wspthnonp |
|- ( P e. ( C ( N WSPathsNOn G ) D ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( P e. ( C ( N WWalksNOn G ) D ) /\ E. h h ( C ( SPathsOn ` G ) D ) P ) ) ) |
4 |
|
simp3r |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( P e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) P ) ) -> E. f f ( A ( SPathsOn ` G ) B ) P ) |
5 |
|
simp3r |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( P e. ( C ( N WWalksNOn G ) D ) /\ E. h h ( C ( SPathsOn ` G ) D ) P ) ) -> E. h h ( C ( SPathsOn ` G ) D ) P ) |
6 |
|
spthonpthon |
|- ( f ( A ( SPathsOn ` G ) B ) P -> f ( A ( PathsOn ` G ) B ) P ) |
7 |
|
spthonpthon |
|- ( h ( C ( SPathsOn ` G ) D ) P -> h ( C ( PathsOn ` G ) D ) P ) |
8 |
6 7
|
anim12i |
|- ( ( f ( A ( SPathsOn ` G ) B ) P /\ h ( C ( SPathsOn ` G ) D ) P ) -> ( f ( A ( PathsOn ` G ) B ) P /\ h ( C ( PathsOn ` G ) D ) P ) ) |
9 |
|
pthontrlon |
|- ( f ( A ( PathsOn ` G ) B ) P -> f ( A ( TrailsOn ` G ) B ) P ) |
10 |
|
pthontrlon |
|- ( h ( C ( PathsOn ` G ) D ) P -> h ( C ( TrailsOn ` G ) D ) P ) |
11 |
|
trlsonwlkon |
|- ( f ( A ( TrailsOn ` G ) B ) P -> f ( A ( WalksOn ` G ) B ) P ) |
12 |
|
trlsonwlkon |
|- ( h ( C ( TrailsOn ` G ) D ) P -> h ( C ( WalksOn ` G ) D ) P ) |
13 |
11 12
|
anim12i |
|- ( ( f ( A ( TrailsOn ` G ) B ) P /\ h ( C ( TrailsOn ` G ) D ) P ) -> ( f ( A ( WalksOn ` G ) B ) P /\ h ( C ( WalksOn ` G ) D ) P ) ) |
14 |
9 10 13
|
syl2an |
|- ( ( f ( A ( PathsOn ` G ) B ) P /\ h ( C ( PathsOn ` G ) D ) P ) -> ( f ( A ( WalksOn ` G ) B ) P /\ h ( C ( WalksOn ` G ) D ) P ) ) |
15 |
|
wlksoneq1eq2 |
|- ( ( f ( A ( WalksOn ` G ) B ) P /\ h ( C ( WalksOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) |
16 |
8 14 15
|
3syl |
|- ( ( f ( A ( SPathsOn ` G ) B ) P /\ h ( C ( SPathsOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) |
17 |
16
|
expcom |
|- ( h ( C ( SPathsOn ` G ) D ) P -> ( f ( A ( SPathsOn ` G ) B ) P -> ( A = C /\ B = D ) ) ) |
18 |
17
|
exlimiv |
|- ( E. h h ( C ( SPathsOn ` G ) D ) P -> ( f ( A ( SPathsOn ` G ) B ) P -> ( A = C /\ B = D ) ) ) |
19 |
18
|
com12 |
|- ( f ( A ( SPathsOn ` G ) B ) P -> ( E. h h ( C ( SPathsOn ` G ) D ) P -> ( A = C /\ B = D ) ) ) |
20 |
19
|
exlimiv |
|- ( E. f f ( A ( SPathsOn ` G ) B ) P -> ( E. h h ( C ( SPathsOn ` G ) D ) P -> ( A = C /\ B = D ) ) ) |
21 |
20
|
imp |
|- ( ( E. f f ( A ( SPathsOn ` G ) B ) P /\ E. h h ( C ( SPathsOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) |
22 |
4 5 21
|
syl2an |
|- ( ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( P e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) P ) ) /\ ( ( N e. NN0 /\ G e. _V ) /\ ( C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( P e. ( C ( N WWalksNOn G ) D ) /\ E. h h ( C ( SPathsOn ` G ) D ) P ) ) ) -> ( A = C /\ B = D ) ) |
23 |
2 3 22
|
syl2an |
|- ( ( P e. ( A ( N WSPathsNOn G ) B ) /\ P e. ( C ( N WSPathsNOn G ) D ) ) -> ( A = C /\ B = D ) ) |