| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | wspthnonp |  |-  ( P e. ( A ( N WSPathsNOn G ) B ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( P e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) P ) ) ) | 
						
							| 3 | 1 | wspthnonp |  |-  ( P e. ( C ( N WSPathsNOn G ) D ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( P e. ( C ( N WWalksNOn G ) D ) /\ E. h h ( C ( SPathsOn ` G ) D ) P ) ) ) | 
						
							| 4 |  | simp3r |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( P e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) P ) ) -> E. f f ( A ( SPathsOn ` G ) B ) P ) | 
						
							| 5 |  | simp3r |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( P e. ( C ( N WWalksNOn G ) D ) /\ E. h h ( C ( SPathsOn ` G ) D ) P ) ) -> E. h h ( C ( SPathsOn ` G ) D ) P ) | 
						
							| 6 |  | spthonpthon |  |-  ( f ( A ( SPathsOn ` G ) B ) P -> f ( A ( PathsOn ` G ) B ) P ) | 
						
							| 7 |  | spthonpthon |  |-  ( h ( C ( SPathsOn ` G ) D ) P -> h ( C ( PathsOn ` G ) D ) P ) | 
						
							| 8 | 6 7 | anim12i |  |-  ( ( f ( A ( SPathsOn ` G ) B ) P /\ h ( C ( SPathsOn ` G ) D ) P ) -> ( f ( A ( PathsOn ` G ) B ) P /\ h ( C ( PathsOn ` G ) D ) P ) ) | 
						
							| 9 |  | pthontrlon |  |-  ( f ( A ( PathsOn ` G ) B ) P -> f ( A ( TrailsOn ` G ) B ) P ) | 
						
							| 10 |  | pthontrlon |  |-  ( h ( C ( PathsOn ` G ) D ) P -> h ( C ( TrailsOn ` G ) D ) P ) | 
						
							| 11 |  | trlsonwlkon |  |-  ( f ( A ( TrailsOn ` G ) B ) P -> f ( A ( WalksOn ` G ) B ) P ) | 
						
							| 12 |  | trlsonwlkon |  |-  ( h ( C ( TrailsOn ` G ) D ) P -> h ( C ( WalksOn ` G ) D ) P ) | 
						
							| 13 | 11 12 | anim12i |  |-  ( ( f ( A ( TrailsOn ` G ) B ) P /\ h ( C ( TrailsOn ` G ) D ) P ) -> ( f ( A ( WalksOn ` G ) B ) P /\ h ( C ( WalksOn ` G ) D ) P ) ) | 
						
							| 14 | 9 10 13 | syl2an |  |-  ( ( f ( A ( PathsOn ` G ) B ) P /\ h ( C ( PathsOn ` G ) D ) P ) -> ( f ( A ( WalksOn ` G ) B ) P /\ h ( C ( WalksOn ` G ) D ) P ) ) | 
						
							| 15 |  | wlksoneq1eq2 |  |-  ( ( f ( A ( WalksOn ` G ) B ) P /\ h ( C ( WalksOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) | 
						
							| 16 | 8 14 15 | 3syl |  |-  ( ( f ( A ( SPathsOn ` G ) B ) P /\ h ( C ( SPathsOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) | 
						
							| 17 | 16 | expcom |  |-  ( h ( C ( SPathsOn ` G ) D ) P -> ( f ( A ( SPathsOn ` G ) B ) P -> ( A = C /\ B = D ) ) ) | 
						
							| 18 | 17 | exlimiv |  |-  ( E. h h ( C ( SPathsOn ` G ) D ) P -> ( f ( A ( SPathsOn ` G ) B ) P -> ( A = C /\ B = D ) ) ) | 
						
							| 19 | 18 | com12 |  |-  ( f ( A ( SPathsOn ` G ) B ) P -> ( E. h h ( C ( SPathsOn ` G ) D ) P -> ( A = C /\ B = D ) ) ) | 
						
							| 20 | 19 | exlimiv |  |-  ( E. f f ( A ( SPathsOn ` G ) B ) P -> ( E. h h ( C ( SPathsOn ` G ) D ) P -> ( A = C /\ B = D ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( E. f f ( A ( SPathsOn ` G ) B ) P /\ E. h h ( C ( SPathsOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) | 
						
							| 22 | 4 5 21 | syl2an |  |-  ( ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( P e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) P ) ) /\ ( ( N e. NN0 /\ G e. _V ) /\ ( C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( P e. ( C ( N WWalksNOn G ) D ) /\ E. h h ( C ( SPathsOn ` G ) D ) P ) ) ) -> ( A = C /\ B = D ) ) | 
						
							| 23 | 2 3 22 | syl2an |  |-  ( ( P e. ( A ( N WSPathsNOn G ) B ) /\ P e. ( C ( N WSPathsNOn G ) D ) ) -> ( A = C /\ B = D ) ) |