Metamath Proof Explorer


Theorem wspthnfi

Description: In a finite graph, the set of simple paths of a fixed length is finite. (Contributed by Alexander van der Vekens, 4-Mar-2018) (Revised by AV, 18-May-2021)

Ref Expression
Assertion wspthnfi
|- ( ( Vtx ` G ) e. Fin -> ( N WSPathsN G ) e. Fin )

Proof

Step Hyp Ref Expression
1 wwlksnfi
 |-  ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin )
2 wspthsswwlkn
 |-  ( N WSPathsN G ) C_ ( N WWalksN G )
3 2 a1i
 |-  ( ( Vtx ` G ) e. Fin -> ( N WSPathsN G ) C_ ( N WWalksN G ) )
4 1 3 ssfid
 |-  ( ( Vtx ` G ) e. Fin -> ( N WSPathsN G ) e. Fin )