| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wspthnonp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fvex |  |-  ( Vtx ` g ) e. _V | 
						
							| 3 | 2 2 | pm3.2i |  |-  ( ( Vtx ` g ) e. _V /\ ( Vtx ` g ) e. _V ) | 
						
							| 4 | 3 | rgen2w |  |-  A. n e. NN0 A. g e. _V ( ( Vtx ` g ) e. _V /\ ( Vtx ` g ) e. _V ) | 
						
							| 5 |  | df-wspthsnon |  |-  WSPathsNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) | 
						
							| 6 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 7 | 6 6 | jca |  |-  ( g = G -> ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( Vtx ` g ) = ( Vtx ` G ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( n = N /\ g = G ) -> ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( Vtx ` g ) = ( Vtx ` G ) ) ) | 
						
							| 9 | 5 8 | el2mpocl |  |-  ( A. n e. NN0 A. g e. _V ( ( Vtx ` g ) e. _V /\ ( Vtx ` g ) e. _V ) -> ( W e. ( A ( N WSPathsNOn G ) B ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) ) | 
						
							| 10 | 4 9 | ax-mp |  |-  ( W e. ( A ( N WSPathsNOn G ) B ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) | 
						
							| 11 |  | simprl |  |-  ( ( W e. ( A ( N WSPathsNOn G ) B ) /\ ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) -> ( N e. NN0 /\ G e. _V ) ) | 
						
							| 12 | 1 | eleq2i |  |-  ( A e. V <-> A e. ( Vtx ` G ) ) | 
						
							| 13 | 1 | eleq2i |  |-  ( B e. V <-> B e. ( Vtx ` G ) ) | 
						
							| 14 | 12 13 | anbi12i |  |-  ( ( A e. V /\ B e. V ) <-> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 15 | 14 | biimpri |  |-  ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. V /\ B e. V ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> ( A e. V /\ B e. V ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( W e. ( A ( N WSPathsNOn G ) B ) /\ ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) -> ( A e. V /\ B e. V ) ) | 
						
							| 18 |  | wspthnon |  |-  ( W e. ( A ( N WSPathsNOn G ) B ) <-> ( W e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) W ) ) | 
						
							| 19 | 18 | biimpi |  |-  ( W e. ( A ( N WSPathsNOn G ) B ) -> ( W e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) W ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( W e. ( A ( N WSPathsNOn G ) B ) /\ ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) -> ( W e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) W ) ) | 
						
							| 21 | 11 17 20 | 3jca |  |-  ( ( W e. ( A ( N WSPathsNOn G ) B ) /\ ( ( N e. NN0 /\ G e. _V ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) /\ ( W e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) W ) ) ) | 
						
							| 22 | 10 21 | mpdan |  |-  ( W e. ( A ( N WSPathsNOn G ) B ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) /\ ( W e. ( A ( N WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) W ) ) ) |