| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-wspthsn |  |-  WSPathsN = ( n e. NN0 , g e. _V |-> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } ) | 
						
							| 2 | 1 | elmpocl |  |-  ( W e. ( N WSPathsN G ) -> ( N e. NN0 /\ G e. _V ) ) | 
						
							| 3 |  | simpl |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WSPathsN G ) ) -> ( N e. NN0 /\ G e. _V ) ) | 
						
							| 4 |  | iswspthn |  |-  ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WSPathsN G ) ) -> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) | 
						
							| 7 |  | 3anass |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) <-> ( ( N e. NN0 /\ G e. _V ) /\ ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) ) | 
						
							| 8 | 3 6 7 | sylanbrc |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WSPathsN G ) ) -> ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) | 
						
							| 9 | 2 8 | mpancom |  |-  ( W e. ( N WSPathsN G ) -> ( ( N e. NN0 /\ G e. _V ) /\ W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |