Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
|- ( ( n = N /\ g = G ) -> ( n WWalksN g ) = ( N WWalksN G ) ) |
2 |
|
fveq2 |
|- ( g = G -> ( SPaths ` g ) = ( SPaths ` G ) ) |
3 |
2
|
breqd |
|- ( g = G -> ( f ( SPaths ` g ) w <-> f ( SPaths ` G ) w ) ) |
4 |
3
|
exbidv |
|- ( g = G -> ( E. f f ( SPaths ` g ) w <-> E. f f ( SPaths ` G ) w ) ) |
5 |
4
|
adantl |
|- ( ( n = N /\ g = G ) -> ( E. f f ( SPaths ` g ) w <-> E. f f ( SPaths ` G ) w ) ) |
6 |
1 5
|
rabeqbidv |
|- ( ( n = N /\ g = G ) -> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) |
7 |
|
df-wspthsn |
|- WSPathsN = ( n e. NN0 , g e. _V |-> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } ) |
8 |
|
ovex |
|- ( N WWalksN G ) e. _V |
9 |
8
|
rabex |
|- { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } e. _V |
10 |
6 7 9
|
ovmpoa |
|- ( ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) |
11 |
7
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = (/) ) |
12 |
|
df-wwlksn |
|- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
13 |
12
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = (/) ) |
14 |
13
|
rabeqdv |
|- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = { w e. (/) | E. f f ( SPaths ` G ) w } ) |
15 |
|
rab0 |
|- { w e. (/) | E. f f ( SPaths ` G ) w } = (/) |
16 |
14 15
|
eqtrdi |
|- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = (/) ) |
17 |
11 16
|
eqtr4d |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) |
18 |
10 17
|
pm2.61i |
|- ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } |