| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnon.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | df-wspthsnon |  |-  WSPathsNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ( N e. NN0 /\ G e. U ) -> WSPathsNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( g = G -> ( Vtx ` g ) = V ) | 
						
							| 6 | 5 | adantl |  |-  ( ( n = N /\ g = G ) -> ( Vtx ` g ) = V ) | 
						
							| 7 |  | oveq12 |  |-  ( ( n = N /\ g = G ) -> ( n WWalksNOn g ) = ( N WWalksNOn G ) ) | 
						
							| 8 | 7 | oveqd |  |-  ( ( n = N /\ g = G ) -> ( a ( n WWalksNOn g ) b ) = ( a ( N WWalksNOn G ) b ) ) | 
						
							| 9 |  | fveq2 |  |-  ( g = G -> ( SPathsOn ` g ) = ( SPathsOn ` G ) ) | 
						
							| 10 | 9 | oveqd |  |-  ( g = G -> ( a ( SPathsOn ` g ) b ) = ( a ( SPathsOn ` G ) b ) ) | 
						
							| 11 | 10 | breqd |  |-  ( g = G -> ( f ( a ( SPathsOn ` g ) b ) w <-> f ( a ( SPathsOn ` G ) b ) w ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( n = N /\ g = G ) -> ( f ( a ( SPathsOn ` g ) b ) w <-> f ( a ( SPathsOn ` G ) b ) w ) ) | 
						
							| 13 | 12 | exbidv |  |-  ( ( n = N /\ g = G ) -> ( E. f f ( a ( SPathsOn ` g ) b ) w <-> E. f f ( a ( SPathsOn ` G ) b ) w ) ) | 
						
							| 14 | 8 13 | rabeqbidv |  |-  ( ( n = N /\ g = G ) -> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } = { w e. ( a ( N WWalksNOn G ) b ) | E. f f ( a ( SPathsOn ` G ) b ) w } ) | 
						
							| 15 | 6 6 14 | mpoeq123dv |  |-  ( ( n = N /\ g = G ) -> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) = ( a e. V , b e. V |-> { w e. ( a ( N WWalksNOn G ) b ) | E. f f ( a ( SPathsOn ` G ) b ) w } ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( N e. NN0 /\ G e. U ) /\ ( n = N /\ g = G ) ) -> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) = ( a e. V , b e. V |-> { w e. ( a ( N WWalksNOn G ) b ) | E. f f ( a ( SPathsOn ` G ) b ) w } ) ) | 
						
							| 17 |  | simpl |  |-  ( ( N e. NN0 /\ G e. U ) -> N e. NN0 ) | 
						
							| 18 |  | elex |  |-  ( G e. U -> G e. _V ) | 
						
							| 19 | 18 | adantl |  |-  ( ( N e. NN0 /\ G e. U ) -> G e. _V ) | 
						
							| 20 | 1 | fvexi |  |-  V e. _V | 
						
							| 21 | 20 20 | mpoex |  |-  ( a e. V , b e. V |-> { w e. ( a ( N WWalksNOn G ) b ) | E. f f ( a ( SPathsOn ` G ) b ) w } ) e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ( N e. NN0 /\ G e. U ) -> ( a e. V , b e. V |-> { w e. ( a ( N WWalksNOn G ) b ) | E. f f ( a ( SPathsOn ` G ) b ) w } ) e. _V ) | 
						
							| 23 | 3 16 17 19 22 | ovmpod |  |-  ( ( N e. NN0 /\ G e. U ) -> ( N WSPathsNOn G ) = ( a e. V , b e. V |-> { w e. ( a ( N WWalksNOn G ) b ) | E. f f ( a ( SPathsOn ` G ) b ) w } ) ) |