| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|- ( ( X ( N WSPathsNOn G ) Y ) =/= (/) <-> E. p p e. ( X ( N WSPathsNOn G ) Y ) ) |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
2
|
wspthnonp |
|- ( p e. ( X ( N WSPathsNOn G ) Y ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) /\ ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) ) ) |
| 4 |
|
wwlknon |
|- ( p e. ( X ( N WWalksNOn G ) Y ) <-> ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) ) |
| 5 |
|
iswwlksn |
|- ( N e. NN0 -> ( p e. ( N WWalksN G ) <-> ( p e. ( WWalks ` G ) /\ ( # ` p ) = ( N + 1 ) ) ) ) |
| 6 |
|
spthonisspth |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> f ( SPaths ` G ) p ) |
| 7 |
|
spthispth |
|- ( f ( SPaths ` G ) p -> f ( Paths ` G ) p ) |
| 8 |
|
pthiswlk |
|- ( f ( Paths ` G ) p -> f ( Walks ` G ) p ) |
| 9 |
|
wlklenvm1 |
|- ( f ( Walks ` G ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) |
| 10 |
6 7 8 9
|
4syl |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) |
| 11 |
|
oveq1 |
|- ( ( # ` p ) = ( N + 1 ) -> ( ( # ` p ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 12 |
11
|
eqeq2d |
|- ( ( # ` p ) = ( N + 1 ) -> ( ( # ` f ) = ( ( # ` p ) - 1 ) <-> ( # ` f ) = ( ( N + 1 ) - 1 ) ) ) |
| 13 |
|
simpr |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) = ( ( N + 1 ) - 1 ) ) |
| 14 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 15 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
| 16 |
14 15
|
syl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
| 17 |
16
|
adantr |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) |
| 18 |
13 17
|
eqtrd |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) = N ) |
| 19 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 20 |
19
|
adantr |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> N =/= 0 ) |
| 21 |
18 20
|
eqnetrd |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) =/= 0 ) |
| 22 |
|
spthonepeq |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( X = Y <-> ( # ` f ) = 0 ) ) |
| 23 |
22
|
necon3bid |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( X =/= Y <-> ( # ` f ) =/= 0 ) ) |
| 24 |
21 23
|
syl5ibrcom |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> X =/= Y ) ) |
| 25 |
24
|
expcom |
|- ( ( # ` f ) = ( ( N + 1 ) - 1 ) -> ( N e. NN -> ( f ( X ( SPathsOn ` G ) Y ) p -> X =/= Y ) ) ) |
| 26 |
25
|
com23 |
|- ( ( # ` f ) = ( ( N + 1 ) - 1 ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) |
| 27 |
12 26
|
biimtrdi |
|- ( ( # ` p ) = ( N + 1 ) -> ( ( # ` f ) = ( ( # ` p ) - 1 ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 28 |
27
|
com13 |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` f ) = ( ( # ` p ) - 1 ) -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) ) |
| 29 |
10 28
|
mpd |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) |
| 30 |
29
|
exlimiv |
|- ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) |
| 31 |
30
|
com12 |
|- ( ( # ` p ) = ( N + 1 ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) |
| 32 |
31
|
adantl |
|- ( ( p e. ( WWalks ` G ) /\ ( # ` p ) = ( N + 1 ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) |
| 33 |
5 32
|
biimtrdi |
|- ( N e. NN0 -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 34 |
33
|
adantr |
|- ( ( N e. NN0 /\ G e. _V ) -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 36 |
35
|
com12 |
|- ( p e. ( N WWalksN G ) -> ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) -> ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 38 |
37
|
com12 |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 39 |
4 38
|
biimtrid |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( p e. ( X ( N WWalksNOn G ) Y ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
| 40 |
39
|
impd |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) -> ( N e. NN -> X =/= Y ) ) ) |
| 41 |
40
|
3impia |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) /\ ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) ) -> ( N e. NN -> X =/= Y ) ) |
| 42 |
3 41
|
syl |
|- ( p e. ( X ( N WSPathsNOn G ) Y ) -> ( N e. NN -> X =/= Y ) ) |
| 43 |
42
|
exlimiv |
|- ( E. p p e. ( X ( N WSPathsNOn G ) Y ) -> ( N e. NN -> X =/= Y ) ) |
| 44 |
1 43
|
sylbi |
|- ( ( X ( N WSPathsNOn G ) Y ) =/= (/) -> ( N e. NN -> X =/= Y ) ) |
| 45 |
44
|
impcom |
|- ( ( N e. NN /\ ( X ( N WSPathsNOn G ) Y ) =/= (/) ) -> X =/= Y ) |