Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|- ( ( X ( N WSPathsNOn G ) Y ) =/= (/) <-> E. p p e. ( X ( N WSPathsNOn G ) Y ) ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
wspthnonp |
|- ( p e. ( X ( N WSPathsNOn G ) Y ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) /\ ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) ) ) |
4 |
|
wwlknon |
|- ( p e. ( X ( N WWalksNOn G ) Y ) <-> ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) ) |
5 |
|
iswwlksn |
|- ( N e. NN0 -> ( p e. ( N WWalksN G ) <-> ( p e. ( WWalks ` G ) /\ ( # ` p ) = ( N + 1 ) ) ) ) |
6 |
|
spthonisspth |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> f ( SPaths ` G ) p ) |
7 |
|
spthispth |
|- ( f ( SPaths ` G ) p -> f ( Paths ` G ) p ) |
8 |
|
pthiswlk |
|- ( f ( Paths ` G ) p -> f ( Walks ` G ) p ) |
9 |
|
wlklenvm1 |
|- ( f ( Walks ` G ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) |
10 |
8 9
|
syl |
|- ( f ( Paths ` G ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) |
11 |
6 7 10
|
3syl |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) |
12 |
|
oveq1 |
|- ( ( # ` p ) = ( N + 1 ) -> ( ( # ` p ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
13 |
12
|
eqeq2d |
|- ( ( # ` p ) = ( N + 1 ) -> ( ( # ` f ) = ( ( # ` p ) - 1 ) <-> ( # ` f ) = ( ( N + 1 ) - 1 ) ) ) |
14 |
|
simpr |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) = ( ( N + 1 ) - 1 ) ) |
15 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
16 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
17 |
15 16
|
syl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
18 |
17
|
adantr |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) |
19 |
14 18
|
eqtrd |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) = N ) |
20 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
21 |
20
|
adantr |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> N =/= 0 ) |
22 |
19 21
|
eqnetrd |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) =/= 0 ) |
23 |
|
spthonepeq |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( X = Y <-> ( # ` f ) = 0 ) ) |
24 |
23
|
necon3bid |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( X =/= Y <-> ( # ` f ) =/= 0 ) ) |
25 |
22 24
|
syl5ibrcom |
|- ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> X =/= Y ) ) |
26 |
25
|
expcom |
|- ( ( # ` f ) = ( ( N + 1 ) - 1 ) -> ( N e. NN -> ( f ( X ( SPathsOn ` G ) Y ) p -> X =/= Y ) ) ) |
27 |
26
|
com23 |
|- ( ( # ` f ) = ( ( N + 1 ) - 1 ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) |
28 |
13 27
|
syl6bi |
|- ( ( # ` p ) = ( N + 1 ) -> ( ( # ` f ) = ( ( # ` p ) - 1 ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
29 |
28
|
com13 |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` f ) = ( ( # ` p ) - 1 ) -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) ) |
30 |
11 29
|
mpd |
|- ( f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) |
31 |
30
|
exlimiv |
|- ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) |
32 |
31
|
com12 |
|- ( ( # ` p ) = ( N + 1 ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) |
33 |
32
|
adantl |
|- ( ( p e. ( WWalks ` G ) /\ ( # ` p ) = ( N + 1 ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) |
34 |
5 33
|
syl6bi |
|- ( N e. NN0 -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
35 |
34
|
adantr |
|- ( ( N e. NN0 /\ G e. _V ) -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
36 |
35
|
adantr |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
37 |
36
|
com12 |
|- ( p e. ( N WWalksN G ) -> ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
38 |
37
|
3ad2ant1 |
|- ( ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) -> ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
39 |
38
|
com12 |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
40 |
4 39
|
syl5bi |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( p e. ( X ( N WWalksNOn G ) Y ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) |
41 |
40
|
impd |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) -> ( N e. NN -> X =/= Y ) ) ) |
42 |
41
|
3impia |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) /\ ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) ) -> ( N e. NN -> X =/= Y ) ) |
43 |
3 42
|
syl |
|- ( p e. ( X ( N WSPathsNOn G ) Y ) -> ( N e. NN -> X =/= Y ) ) |
44 |
43
|
exlimiv |
|- ( E. p p e. ( X ( N WSPathsNOn G ) Y ) -> ( N e. NN -> X =/= Y ) ) |
45 |
1 44
|
sylbi |
|- ( ( X ( N WSPathsNOn G ) Y ) =/= (/) -> ( N e. NN -> X =/= Y ) ) |
46 |
45
|
impcom |
|- ( ( N e. NN /\ ( X ( N WSPathsNOn G ) Y ) =/= (/) ) -> X =/= Y ) |