| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlksnwwlksnon.v |
|- V = ( Vtx ` G ) |
| 2 |
|
iswspthn |
|- ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) ) |
| 3 |
1
|
wwlksnwwlksnon |
|- ( W e. ( N WWalksN G ) <-> E. a e. V E. b e. V W e. ( a ( N WWalksNOn G ) b ) ) |
| 4 |
3
|
anbi1i |
|- ( ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) <-> ( E. a e. V E. b e. V W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) ) |
| 5 |
|
r19.41vv |
|- ( E. a e. V E. b e. V ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) <-> ( E. a e. V E. b e. V W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) ) |
| 6 |
4 5
|
bitr4i |
|- ( ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) <-> E. a e. V E. b e. V ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) ) |
| 7 |
|
3anass |
|- ( ( f ( SPaths ` G ) W /\ ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) <-> ( f ( SPaths ` G ) W /\ ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 8 |
7
|
a1i |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( ( f ( SPaths ` G ) W /\ ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) <-> ( f ( SPaths ` G ) W /\ ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) ) |
| 9 |
|
vex |
|- f e. _V |
| 10 |
1
|
isspthonpth |
|- ( ( ( a e. V /\ b e. V ) /\ ( f e. _V /\ W e. ( a ( N WWalksNOn G ) b ) ) ) -> ( f ( a ( SPathsOn ` G ) b ) W <-> ( f ( SPaths ` G ) W /\ ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 11 |
9 10
|
mpanr1 |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( f ( a ( SPathsOn ` G ) b ) W <-> ( f ( SPaths ` G ) W /\ ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 12 |
|
spthiswlk |
|- ( f ( SPaths ` G ) W -> f ( Walks ` G ) W ) |
| 13 |
|
wlklenvm1 |
|- ( f ( Walks ` G ) W -> ( # ` f ) = ( ( # ` W ) - 1 ) ) |
| 14 |
|
wwlknon |
|- ( W e. ( a ( N WWalksNOn G ) b ) <-> ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) ) |
| 15 |
|
simpl2 |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( W ` 0 ) = a ) |
| 16 |
|
simpr |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( # ` f ) = ( ( # ` W ) - 1 ) ) |
| 17 |
|
wwlknbp1 |
|- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
| 18 |
|
oveq1 |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 19 |
18
|
3ad2ant3 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 20 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 21 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
| 22 |
20 21
|
syl |
|- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) |
| 24 |
19 23
|
eqtrd |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = N ) |
| 25 |
17 24
|
syl |
|- ( W e. ( N WWalksN G ) -> ( ( # ` W ) - 1 ) = N ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) -> ( ( # ` W ) - 1 ) = N ) |
| 27 |
26
|
adantr |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) - 1 ) = N ) |
| 28 |
16 27
|
eqtrd |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( # ` f ) = N ) |
| 29 |
28
|
fveq2d |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( W ` ( # ` f ) ) = ( W ` N ) ) |
| 30 |
|
simpl3 |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( W ` N ) = b ) |
| 31 |
29 30
|
eqtrd |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( W ` ( # ` f ) ) = b ) |
| 32 |
15 31
|
jca |
|- ( ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) /\ ( # ` f ) = ( ( # ` W ) - 1 ) ) -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) |
| 33 |
32
|
ex |
|- ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = a /\ ( W ` N ) = b ) -> ( ( # ` f ) = ( ( # ` W ) - 1 ) -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 34 |
14 33
|
sylbi |
|- ( W e. ( a ( N WWalksNOn G ) b ) -> ( ( # ` f ) = ( ( # ` W ) - 1 ) -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 35 |
34
|
adantl |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( ( # ` f ) = ( ( # ` W ) - 1 ) -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 36 |
35
|
com12 |
|- ( ( # ` f ) = ( ( # ` W ) - 1 ) -> ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 37 |
12 13 36
|
3syl |
|- ( f ( SPaths ` G ) W -> ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 38 |
37
|
com12 |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( f ( SPaths ` G ) W -> ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) |
| 39 |
38
|
pm4.71d |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( f ( SPaths ` G ) W <-> ( f ( SPaths ` G ) W /\ ( ( W ` 0 ) = a /\ ( W ` ( # ` f ) ) = b ) ) ) ) |
| 40 |
8 11 39
|
3bitr4rd |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( f ( SPaths ` G ) W <-> f ( a ( SPathsOn ` G ) b ) W ) ) |
| 41 |
40
|
exbidv |
|- ( ( ( a e. V /\ b e. V ) /\ W e. ( a ( N WWalksNOn G ) b ) ) -> ( E. f f ( SPaths ` G ) W <-> E. f f ( a ( SPathsOn ` G ) b ) W ) ) |
| 42 |
41
|
pm5.32da |
|- ( ( a e. V /\ b e. V ) -> ( ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) <-> ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( a ( SPathsOn ` G ) b ) W ) ) ) |
| 43 |
|
wspthnon |
|- ( W e. ( a ( N WSPathsNOn G ) b ) <-> ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( a ( SPathsOn ` G ) b ) W ) ) |
| 44 |
42 43
|
bitr4di |
|- ( ( a e. V /\ b e. V ) -> ( ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) <-> W e. ( a ( N WSPathsNOn G ) b ) ) ) |
| 45 |
44
|
2rexbiia |
|- ( E. a e. V E. b e. V ( W e. ( a ( N WWalksNOn G ) b ) /\ E. f f ( SPaths ` G ) W ) <-> E. a e. V E. b e. V W e. ( a ( N WSPathsNOn G ) b ) ) |
| 46 |
2 6 45
|
3bitri |
|- ( W e. ( N WSPathsN G ) <-> E. a e. V E. b e. V W e. ( a ( N WSPathsNOn G ) b ) ) |