Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
|- ( ph -> U e. WUni ) |
2 |
|
iswun |
|- ( U e. WUni -> ( U e. WUni <-> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) ) |
3 |
2
|
ibi |
|- ( U e. WUni -> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) |
4 |
3
|
simp2d |
|- ( U e. WUni -> U =/= (/) ) |
5 |
1 4
|
syl |
|- ( ph -> U =/= (/) ) |
6 |
|
n0 |
|- ( U =/= (/) <-> E. x x e. U ) |
7 |
5 6
|
sylib |
|- ( ph -> E. x x e. U ) |
8 |
1
|
adantr |
|- ( ( ph /\ x e. U ) -> U e. WUni ) |
9 |
|
simpr |
|- ( ( ph /\ x e. U ) -> x e. U ) |
10 |
|
0ss |
|- (/) C_ x |
11 |
10
|
a1i |
|- ( ( ph /\ x e. U ) -> (/) C_ x ) |
12 |
8 9 11
|
wunss |
|- ( ( ph /\ x e. U ) -> (/) e. U ) |
13 |
7 12
|
exlimddv |
|- ( ph -> (/) e. U ) |