Metamath Proof Explorer


Theorem wuncid

Description: The weak universe closure of a set contains the set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuncid
|- ( A e. V -> A C_ ( wUniCl ` A ) )

Proof

Step Hyp Ref Expression
1 ssintub
 |-  A C_ |^| { u e. WUni | A C_ u }
2 wuncval
 |-  ( A e. V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } )
3 1 2 sseqtrrid
 |-  ( A e. V -> A C_ ( wUniCl ` A ) )