Step |
Hyp |
Ref |
Expression |
1 |
|
wuncn.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wuncn.2 |
|- ( ph -> _om e. U ) |
3 |
|
df-c |
|- CC = ( R. X. R. ) |
4 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
5 |
|
df-ni |
|- N. = ( _om \ { (/) } ) |
6 |
1 2
|
wundif |
|- ( ph -> ( _om \ { (/) } ) e. U ) |
7 |
5 6
|
eqeltrid |
|- ( ph -> N. e. U ) |
8 |
1 7 7
|
wunxp |
|- ( ph -> ( N. X. N. ) e. U ) |
9 |
|
elpqn |
|- ( x e. Q. -> x e. ( N. X. N. ) ) |
10 |
9
|
ssriv |
|- Q. C_ ( N. X. N. ) |
11 |
10
|
a1i |
|- ( ph -> Q. C_ ( N. X. N. ) ) |
12 |
1 8 11
|
wunss |
|- ( ph -> Q. e. U ) |
13 |
1 12
|
wunpw |
|- ( ph -> ~P Q. e. U ) |
14 |
|
prpssnq |
|- ( x e. P. -> x C. Q. ) |
15 |
14
|
pssssd |
|- ( x e. P. -> x C_ Q. ) |
16 |
|
velpw |
|- ( x e. ~P Q. <-> x C_ Q. ) |
17 |
15 16
|
sylibr |
|- ( x e. P. -> x e. ~P Q. ) |
18 |
17
|
ssriv |
|- P. C_ ~P Q. |
19 |
18
|
a1i |
|- ( ph -> P. C_ ~P Q. ) |
20 |
1 13 19
|
wunss |
|- ( ph -> P. e. U ) |
21 |
1 20 20
|
wunxp |
|- ( ph -> ( P. X. P. ) e. U ) |
22 |
1 21
|
wunpw |
|- ( ph -> ~P ( P. X. P. ) e. U ) |
23 |
|
enrer |
|- ~R Er ( P. X. P. ) |
24 |
23
|
a1i |
|- ( ph -> ~R Er ( P. X. P. ) ) |
25 |
24
|
qsss |
|- ( ph -> ( ( P. X. P. ) /. ~R ) C_ ~P ( P. X. P. ) ) |
26 |
1 22 25
|
wunss |
|- ( ph -> ( ( P. X. P. ) /. ~R ) e. U ) |
27 |
4 26
|
eqeltrid |
|- ( ph -> R. e. U ) |
28 |
1 27 27
|
wunxp |
|- ( ph -> ( R. X. R. ) e. U ) |
29 |
3 28
|
eqeltrid |
|- ( ph -> CC e. U ) |