Metamath Proof Explorer


Theorem wuncnv

Description: A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1
|- ( ph -> U e. WUni )
wunop.2
|- ( ph -> A e. U )
Assertion wuncnv
|- ( ph -> `' A e. U )

Proof

Step Hyp Ref Expression
1 wun0.1
 |-  ( ph -> U e. WUni )
2 wunop.2
 |-  ( ph -> A e. U )
3 1 2 wunrn
 |-  ( ph -> ran A e. U )
4 1 2 wundm
 |-  ( ph -> dom A e. U )
5 1 3 4 wunxp
 |-  ( ph -> ( ran A X. dom A ) e. U )
6 cnvssrndm
 |-  `' A C_ ( ran A X. dom A )
7 6 a1i
 |-  ( ph -> `' A C_ ( ran A X. dom A ) )
8 1 5 7 wunss
 |-  ( ph -> `' A e. U )